Datasets:
Tasks:
Text Classification
Sub-tasks:
acceptability-classification
Languages:
Italian
ArXiv:
License:
Initial config
Browse files- itacola.py +146 -0
itacola.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import csv
|
2 |
+
import sys
|
3 |
+
|
4 |
+
import datasets
|
5 |
+
from typing import List
|
6 |
+
|
7 |
+
csv.field_size_limit(sys.maxsize)
|
8 |
+
|
9 |
+
|
10 |
+
_CITATION = """\
|
11 |
+
@inproceedings{trotta-etal-2021-itacola,
|
12 |
+
author = {Trotta, Daniela and Guarasci, Raffaele and Leonardelli, Elisa and Tonelli, Sara},
|
13 |
+
title = {Monolingual and Cross-Lingual Acceptability Judgments with the Italian {CoLA} corpus},
|
14 |
+
journal = {Arxiv preprint},
|
15 |
+
year = {2021},
|
16 |
+
}
|
17 |
+
"""
|
18 |
+
|
19 |
+
_DESCRIPTION = """\
|
20 |
+
The Italian Corpus of Linguistic Acceptability includes almost 10k sentences taken from
|
21 |
+
linguistic literature with a binary annotation made by the original authors themselves.
|
22 |
+
The work is inspired by the English Corpus of Linguistic Acceptability (CoLA) by Warstadt et al.
|
23 |
+
Part of the dataset has been manually annotated to highlight 9 linguistic phenomena.
|
24 |
+
"""
|
25 |
+
|
26 |
+
_HOMEPAGE = "https://github.com/dhfbk/ItaCoLA-dataset"
|
27 |
+
|
28 |
+
_LICENSE = "None"
|
29 |
+
|
30 |
+
_SPLITS = ["train", "test"]
|
31 |
+
|
32 |
+
|
33 |
+
class ItaColaConfig(datasets.BuilderConfig):
|
34 |
+
"""BuilderConfig for ItaCoLA."""
|
35 |
+
|
36 |
+
def __init__(
|
37 |
+
self,
|
38 |
+
features,
|
39 |
+
data_url,
|
40 |
+
**kwargs,
|
41 |
+
):
|
42 |
+
"""
|
43 |
+
Args:
|
44 |
+
features: `list[string]`, list of the features that will appear in the
|
45 |
+
feature dict. Should not include "label".
|
46 |
+
data_url: `string`, url to download the zip file from.
|
47 |
+
**kwargs: keyword arguments forwarded to super.
|
48 |
+
"""
|
49 |
+
super().__init__(version=datasets.Version("1.0.0"), **kwargs)
|
50 |
+
self.data_url = data_url
|
51 |
+
self.features = features
|
52 |
+
|
53 |
+
|
54 |
+
class ItaCola(datasets.GeneratorBasedBuilder):
|
55 |
+
VERSION = datasets.Version("1.0.0")
|
56 |
+
|
57 |
+
BUILDER_CONFIGS = [
|
58 |
+
ItaColaConfig(
|
59 |
+
name="scores",
|
60 |
+
features=["unique_id", "source", "acceptability", "sentence"],
|
61 |
+
data_url="https://raw.githubusercontent.com/dhfbk/ItaCoLA-dataset/main/ItaCoLA_dataset.tsv"
|
62 |
+
),
|
63 |
+
ItaColaConfig(
|
64 |
+
name="phenomena",
|
65 |
+
features=[
|
66 |
+
"unique_id",
|
67 |
+
"source",
|
68 |
+
"acceptability",
|
69 |
+
"sentence",
|
70 |
+
"cleft_construction",
|
71 |
+
"copular_construction",
|
72 |
+
"subject_verb_agreement",
|
73 |
+
"wh_islands_violations",
|
74 |
+
"simple",
|
75 |
+
"question",
|
76 |
+
"auxiliary",
|
77 |
+
"bind",
|
78 |
+
"indefinite_pronouns",
|
79 |
+
],
|
80 |
+
data_url="https://github.com/dhfbk/ItaCoLA-dataset/raw/main/ItaCoLA_dataset_phenomenon.tsv"
|
81 |
+
),
|
82 |
+
]
|
83 |
+
|
84 |
+
DEFAULT_CONFIG_NAME = "scores"
|
85 |
+
|
86 |
+
def _info(self):
|
87 |
+
features = {feature: datasets.Value("int32") for feature in self.config.features}
|
88 |
+
features["source"] = datasets.Value("string")
|
89 |
+
features["sentence"] = datasets.Value("string")
|
90 |
+
return datasets.DatasetInfo(
|
91 |
+
description=_DESCRIPTION,
|
92 |
+
features=datasets.Features(features),
|
93 |
+
homepage=_HOMEPAGE,
|
94 |
+
license=_LICENSE,
|
95 |
+
citation=_CITATION,
|
96 |
+
)
|
97 |
+
|
98 |
+
def _split_generators(self, dl_manager):
|
99 |
+
"""Returns SplitGenerators."""
|
100 |
+
data_file = dl_manager.download_and_extract(self.config.data_url)
|
101 |
+
if self.config.name == "scores":
|
102 |
+
return [
|
103 |
+
datasets.SplitGenerator(
|
104 |
+
name=datasets.Split.TRAIN,
|
105 |
+
gen_kwargs={
|
106 |
+
"filepath": data_file,
|
107 |
+
"split": "train",
|
108 |
+
"features": self.config.features,
|
109 |
+
},
|
110 |
+
),
|
111 |
+
datasets.SplitGenerator(
|
112 |
+
name=datasets.Split.TEST,
|
113 |
+
gen_kwargs={
|
114 |
+
"filepath": data_file,
|
115 |
+
"split": "test",
|
116 |
+
"features": self.config.features,
|
117 |
+
},
|
118 |
+
),
|
119 |
+
]
|
120 |
+
else:
|
121 |
+
return [
|
122 |
+
datasets.SplitGenerator(
|
123 |
+
name=datasets.Split.TRAIN,
|
124 |
+
gen_kwargs={
|
125 |
+
"filepath": data_file,
|
126 |
+
"split": "train",
|
127 |
+
"features": self.config.features,
|
128 |
+
},
|
129 |
+
),
|
130 |
+
]
|
131 |
+
|
132 |
+
def _generate_examples(self, filepath: str, split: str, features: List[str]):
|
133 |
+
"""Yields examples as (key, example) tuples."""
|
134 |
+
with open(filepath, encoding="utf8") as f:
|
135 |
+
for id_, row in f:
|
136 |
+
if id_ == 0:
|
137 |
+
continue
|
138 |
+
ex_split = None
|
139 |
+
fields = row.strip().split("\t")
|
140 |
+
if len(fields) > 5:
|
141 |
+
fields, ex_split = fields[:-1], fields[-1]
|
142 |
+
if ex_split.strip() != split:
|
143 |
+
continue
|
144 |
+
yield id_, {
|
145 |
+
k:v.strip() for k,v in zip(features, fields)
|
146 |
+
}
|