clefourrier HF staff commited on
Commit
930c9cf
·
1 Parent(s): 2abb593

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +109 -0
README.md ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ licence: unknown
3
+ ---
4
+
5
+ # Dataset Card for uracil
6
+
7
+ ## Table of Contents
8
+ - [Table of Contents](#table-of-contents)
9
+ - [Dataset Description](#dataset-description)
10
+ - [Dataset Summary](#dataset-summary)
11
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
12
+ - [External Use](#external-use)
13
+ - [PyGeometric](#pygeometric)
14
+ - [Dataset Structure](#dataset-structure)
15
+ - [Data Properties](#data-properties)
16
+ - [Data Fields](#data-fields)
17
+ - [Data Splits](#data-splits)
18
+ - [Additional Information](#additional-information)
19
+ - [Licensing Information](#licensing-information)
20
+ - [Citation Information](#citation-information)
21
+ - [Contributions](#contributions)
22
+
23
+ ## Dataset Description
24
+ - **[Homepage](http://www.sgdml.org/#datasets)**
25
+ - **Paper:**: (see citation)
26
+
27
+
28
+ ### Dataset Summary
29
+ The `uracil` dataset is a molecular dynamics (MD) dataset. The total energy and force labels for each dataset were computed using the PBE+vdW-TS electronic structure method. All geometries are in Angstrom, energies and forces are given in kcal/mol and kcal/mol/A respectively.
30
+
31
+
32
+ ### Supported Tasks and Leaderboards
33
+ `uracil` should be used for organic molecular property prediction, a regression task on 1 property. The score used is Mean absolute errors (in meV) for energy prediction.
34
+
35
+
36
+ ## External Use
37
+ ### PyGeometric
38
+ To load in PyGeometric, do the following:
39
+
40
+ ```python
41
+ from datasets import load_dataset
42
+
43
+ from torch_geometric.data import Data
44
+ from torch_geometric.loader import DataLoader
45
+
46
+ dataset_hf = load_dataset("graphs-datasets/<mydataset>")
47
+ # For the train set (replace by valid or test as needed)
48
+ dataset_pg_list = [Data(graph) for graph in dataset_hf["train"]]
49
+ dataset_pg = DataLoader(dataset_pg_list)
50
+ ```
51
+
52
+ ## Dataset Structure
53
+
54
+ ### Data Properties
55
+ | property | value |
56
+ |---|---|
57
+ | scale | big |
58
+ | #graphs | 133769 |
59
+ | average #nodes | 12.0 |
60
+ | average #edges | 128.88676085818943 |
61
+
62
+ ### Data Fields
63
+
64
+ Each row of a given file is a graph, with:
65
+ - `node_feat` (list: #nodes x #node-features): nodes
66
+ - `edge_index` (list: 2 x #edges): pairs of nodes constituting edges
67
+ - `edge_attr` (list: #edges x #edge-features): for the aforementioned edges, contains their features
68
+ - `y` (list: #labels): contains the number of labels available to predict
69
+ - `num_nodes` (int): number of nodes of the graph
70
+
71
+ ### Data Splits
72
+
73
+ This data is not split, and should be used with cross validation. It comes from the PyGeometric version of the dataset.
74
+
75
+ ## Additional Information
76
+
77
+ ### Licensing Information
78
+ The dataset has been released under license unknown.
79
+
80
+ ### Citation Information
81
+ ```
82
+ @inproceedings{Morris+2020,
83
+ title={TUDataset: A collection of benchmark datasets for learning with graphs},
84
+ author={Christopher Morris and Nils M. Kriege and Franka Bause and Kristian Kersting and Petra Mutzel and Marion Neumann},
85
+ booktitle={ICML 2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020)},
86
+ archivePrefix={arXiv},
87
+ eprint={2007.08663},
88
+ url={www.graphlearning.io},
89
+ year={2020}
90
+ }
91
+ ```
92
+
93
+ ```
94
+
95
+ @article{Chmiela_2017,
96
+ doi = {10.1126/sciadv.1603015},
97
+ url = {https://doi.org/10.1126%2Fsciadv.1603015},
98
+ year = 2017,
99
+ month = {may},
100
+ publisher = {American Association for the Advancement of Science ({AAAS})},
101
+ volume = {3},
102
+ number = {5},
103
+ author = {Stefan Chmiela and Alexandre Tkatchenko and Huziel E. Sauceda and Igor Poltavsky and Kristof T. Schütt and Klaus-Robert Müller},
104
+ title = {Machine learning of accurate energy-conserving molecular force fields},
105
+ journal = {Science Advances}
106
+ }
107
+
108
+
109
+ ```