parquet-converter
commited on
Commit
•
23ebd84
1
Parent(s):
6800b85
Update parquet files
Browse files- README.md +0 -109
- dataset_infos.json +0 -1
- data/full-00000-of-00002-2c5ec7f73767eb78.parquet → graphs-datasets--MD17-salicylic_acid/parquet-full-00000-of-00002.parquet +2 -2
- data/full-00001-of-00002-106f96df9cd89c4f.parquet → graphs-datasets--MD17-salicylic_acid/parquet-full-00001-of-00002.parquet +2 -2
README.md
DELETED
@@ -1,109 +0,0 @@
|
|
1 |
-
---
|
2 |
-
licence: unknown
|
3 |
-
---
|
4 |
-
|
5 |
-
# Dataset Card for salicylic_acid
|
6 |
-
|
7 |
-
## Table of Contents
|
8 |
-
- [Table of Contents](#table-of-contents)
|
9 |
-
- [Dataset Description](#dataset-description)
|
10 |
-
- [Dataset Summary](#dataset-summary)
|
11 |
-
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
12 |
-
- [External Use](#external-use)
|
13 |
-
- [PyGeometric](#pygeometric)
|
14 |
-
- [Dataset Structure](#dataset-structure)
|
15 |
-
- [Data Properties](#data-properties)
|
16 |
-
- [Data Fields](#data-fields)
|
17 |
-
- [Data Splits](#data-splits)
|
18 |
-
- [Additional Information](#additional-information)
|
19 |
-
- [Licensing Information](#licensing-information)
|
20 |
-
- [Citation Information](#citation-information)
|
21 |
-
- [Contributions](#contributions)
|
22 |
-
|
23 |
-
## Dataset Description
|
24 |
-
- **[Homepage](http://www.sgdml.org/#datasets)**
|
25 |
-
- **Paper:**: (see citation)
|
26 |
-
|
27 |
-
|
28 |
-
### Dataset Summary
|
29 |
-
The `salicylic_acid` dataset is a molecular dynamics (MD) dataset. The total energy and force labels for each dataset were computed using the PBE+vdW-TS electronic structure method. All geometries are in Angstrom, energies and forces are given in kcal/mol and kcal/mol/A respectively.
|
30 |
-
|
31 |
-
|
32 |
-
### Supported Tasks and Leaderboards
|
33 |
-
`salicylic_acid` should be used for organic molecular property prediction, a regression task on 1 property. The score used is Mean absolute errors (in meV) for energy prediction.
|
34 |
-
|
35 |
-
|
36 |
-
## External Use
|
37 |
-
### PyGeometric
|
38 |
-
To load in PyGeometric, do the following:
|
39 |
-
|
40 |
-
```python
|
41 |
-
from datasets import load_dataset
|
42 |
-
|
43 |
-
from torch_geometric.data import Data
|
44 |
-
from torch_geometric.loader import DataLoader
|
45 |
-
|
46 |
-
dataset_hf = load_dataset("graphs-datasets/<mydataset>")
|
47 |
-
# For the train set (replace by valid or test as needed)
|
48 |
-
dataset_pg_list = [Data(graph) for graph in dataset_hf["train"]]
|
49 |
-
dataset_pg = DataLoader(dataset_pg_list)
|
50 |
-
```
|
51 |
-
|
52 |
-
## Dataset Structure
|
53 |
-
|
54 |
-
### Data Properties
|
55 |
-
| property | value |
|
56 |
-
|---|---|
|
57 |
-
| scale | big |
|
58 |
-
| #graphs | 220231 |
|
59 |
-
| average #nodes | 16.0 |
|
60 |
-
| average #edges | 208.2681717461586 |
|
61 |
-
|
62 |
-
### Data Fields
|
63 |
-
|
64 |
-
Each row of a given file is a graph, with:
|
65 |
-
- `node_feat` (list: #nodes x #node-features): nodes
|
66 |
-
- `edge_index` (list: 2 x #edges): pairs of nodes constituting edges
|
67 |
-
- `edge_attr` (list: #edges x #edge-features): for the aforementioned edges, contains their features
|
68 |
-
- `y` (list: #labels): contains the number of labels available to predict
|
69 |
-
- `num_nodes` (int): number of nodes of the graph
|
70 |
-
|
71 |
-
### Data Splits
|
72 |
-
|
73 |
-
This data is not split, and should be used with cross validation. It comes from the PyGeometric version of the dataset.
|
74 |
-
|
75 |
-
## Additional Information
|
76 |
-
|
77 |
-
### Licensing Information
|
78 |
-
The dataset has been released under license unknown.
|
79 |
-
|
80 |
-
### Citation Information
|
81 |
-
```
|
82 |
-
@inproceedings{Morris+2020,
|
83 |
-
title={TUDataset: A collection of benchmark datasets for learning with graphs},
|
84 |
-
author={Christopher Morris and Nils M. Kriege and Franka Bause and Kristian Kersting and Petra Mutzel and Marion Neumann},
|
85 |
-
booktitle={ICML 2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020)},
|
86 |
-
archivePrefix={arXiv},
|
87 |
-
eprint={2007.08663},
|
88 |
-
url={www.graphlearning.io},
|
89 |
-
year={2020}
|
90 |
-
}
|
91 |
-
```
|
92 |
-
|
93 |
-
```
|
94 |
-
|
95 |
-
@article{Chmiela_2017,
|
96 |
-
doi = {10.1126/sciadv.1603015},
|
97 |
-
url = {https://doi.org/10.1126%2Fsciadv.1603015},
|
98 |
-
year = 2017,
|
99 |
-
month = {may},
|
100 |
-
publisher = {American Association for the Advancement of Science ({AAAS})},
|
101 |
-
volume = {3},
|
102 |
-
number = {5},
|
103 |
-
author = {Stefan Chmiela and Alexandre Tkatchenko and Huziel E. Sauceda and Igor Poltavsky and Kristof T. Schütt and Klaus-Robert Müller},
|
104 |
-
title = {Machine learning of accurate energy-conserving molecular force fields},
|
105 |
-
journal = {Science Advances}
|
106 |
-
}
|
107 |
-
|
108 |
-
|
109 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dataset_infos.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"graphs-datasets--MD17-salicylic_acid": {"description": "", "citation": "", "homepage": "", "license": "", "features": {"edge_index": {"feature": {"feature": {"dtype": "int64", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "node_feat": {"feature": {"feature": {"dtype": "float64", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "y": {"feature": {"dtype": "float64", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "num_nodes": {"dtype": "int64", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "json", "config_name": "default", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"full": {"name": "full", "num_bytes": 840469344, "num_examples": 220232, "dataset_name": "MD17-salicylic_acid"}}, "download_checksums": null, "download_size": 4370337, "post_processing_size": null, "dataset_size": 840469344, "size_in_bytes": 844839681}}
|
|
|
|
data/full-00000-of-00002-2c5ec7f73767eb78.parquet → graphs-datasets--MD17-salicylic_acid/parquet-full-00000-of-00002.parquet
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:756e4916f0e0a694ef7f478a54fd6b35e5c243a06a5c5e9753066c2fea932165
|
3 |
+
size 2887279
|
data/full-00001-of-00002-106f96df9cd89c4f.parquet → graphs-datasets--MD17-salicylic_acid/parquet-full-00001-of-00002.parquet
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b3c407fcd107020c75e8d72ddfee508efca989b4e1908926a6943ac29b627ee2
|
3 |
+
size 1999195
|