code_x_glue_cc_defect_detection / code_x_glue_cc_defect_detection.py
system's picture
system HF Staff
Update files from the datasets library (from 1.8.0)
9782595
raw
history blame
3.24 kB
from typing import List
import datasets
from .common import TrainValidTestChild
from .generated_definitions import DEFINITIONS
_DESCRIPTION = """Given a source code, the task is to identify whether it is an insecure code that may attack software systems, such as resource leaks, use-after-free vulnerabilities and DoS attack. We treat the task as binary classification (0/1), where 1 stands for insecure code and 0 for secure code.
The dataset we use comes from the paper Devign: Effective Vulnerability Identification by Learning Comprehensive Program Semantics via Graph Neural Networks. We combine all projects and split 80%/10%/10% for training/dev/test."""
_CITATION = """@inproceedings{zhou2019devign,
title={Devign: Effective vulnerability identification by learning comprehensive program semantics via graph neural networks},
author={Zhou, Yaqin and Liu, Shangqing and Siow, Jingkai and Du, Xiaoning and Liu, Yang},
booktitle={Advances in Neural Information Processing Systems},
pages={10197--10207}, year={2019}"""
class CodeXGlueCcDefectDetectionImpl(TrainValidTestChild):
_DESCRIPTION = _DESCRIPTION
_CITATION = _CITATION
_FEATURES = {
"id": datasets.Value("int32"), # Index of the sample
"func": datasets.Value("string"), # The source code
"target": datasets.Value("bool"), # 0 or 1 (vulnerability or not)
"project": datasets.Value("string"), # Original project that contains this code
"commit_id": datasets.Value("string"), # Commit identifier in the original project
}
_SUPERVISED_KEYS = ["target"]
def generate_urls(self, split_name):
yield "index", f"{split_name}.txt"
yield "data", "function.json"
def _generate_examples(self, split_name, file_paths):
import json
js_all = json.load(open(file_paths["data"], encoding="utf-8"))
index = set()
with open(file_paths["index"], encoding="utf-8") as f:
for line in f:
line = line.strip()
index.add(int(line))
for idx, js in enumerate(js_all):
if idx in index:
js["id"] = idx
js["target"] = int(js["target"]) == 1
yield idx, js
CLASS_MAPPING = {
"CodeXGlueCcDefectDetection": CodeXGlueCcDefectDetectionImpl,
}
class CodeXGlueCcDefectDetection(datasets.GeneratorBasedBuilder):
BUILDER_CONFIG_CLASS = datasets.BuilderConfig
BUILDER_CONFIGS = [
datasets.BuilderConfig(name=name, description=info["description"]) for name, info in DEFINITIONS.items()
]
def _info(self):
name = self.config.name
info = DEFINITIONS[name]
if info["class_name"] in CLASS_MAPPING:
self.child = CLASS_MAPPING[info["class_name"]](info)
else:
raise RuntimeError(f"Unknown python class for dataset configuration {name}")
ret = self.child._info()
return ret
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
return self.child._split_generators(dl_manager=dl_manager)
def _generate_examples(self, split_name, file_paths):
return self.child._generate_examples(split_name, file_paths)