Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
English
Size:
1K - 10K
ArXiv:
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Poem Sentiment: A sentiment dataset of poem verses""" | |
from __future__ import absolute_import, division, print_function | |
import datasets | |
_CITATION = """\ | |
@misc{sheng2020investigating, | |
title={Investigating Societal Biases in a Poetry Composition System}, | |
author={Emily Sheng and David Uthus}, | |
year={2020}, | |
eprint={2011.02686}, | |
archivePrefix={arXiv}, | |
primaryClass={cs.CL} | |
} | |
""" | |
_DESCRIPTION = """\ | |
Poem Sentiment is a sentiment dataset of poem verses from Project Gutenberg. \ | |
This dataset can be used for tasks such as sentiment classification or style transfer for poems. | |
""" | |
_HOMEPAGE = "https://github.com/google-research-datasets/poem-sentiment" | |
_BASE_URL = "https://raw.githubusercontent.com/google-research-datasets/poem-sentiment/master/data/" | |
_URLS = { | |
"train": f"{_BASE_URL}/train.tsv", | |
"dev": f"{_BASE_URL}/dev.tsv", | |
"test": f"{_BASE_URL}/test.tsv", | |
} | |
_LABEL_MAPPING = {-1: 0, 0: 2, 1: 1, 2: 3} | |
class PoemSentiment(datasets.GeneratorBasedBuilder): | |
"""Poem Sentiment: A sentiment dataset of poem verses""" | |
VERSION = datasets.Version("1.0.0") | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("int32"), | |
"verse_text": datasets.Value("string"), | |
"label": datasets.ClassLabel(names=["negative", "positive", "no_impact", "mixed"]), | |
} | |
), | |
supervised_keys=None, | |
homepage=_HOMEPAGE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
downloaded_files = dl_manager.download(_URLS) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), | |
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), | |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), | |
] | |
def _generate_examples(self, filepath): | |
with open(filepath, encoding="utf-8") as f: | |
lines = f.readlines() | |
for line in lines: | |
fields = line.strip().split("\t") | |
idx, verse_text, label = fields | |
label = _LABEL_MAPPING[int(label)] | |
yield int(idx), {"id": int(idx), "verse_text": verse_text, "label": label} | |