newsgroup / newsgroup.py
system's picture
system HF staff
Update files from the datasets library (from 1.16.0)
2a0b31b
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""20Newsgroup dataset"""
import datasets
_CITATION = """
@inproceedings{Lang95,
author = {Ken Lang},
title = {Newsweeder: Learning to filter netnews}
year = {1995}
booktitle = {Proceedings of the Twelfth International Conference on Machine Learning}
pages = {331-339}
}
"""
_DESCRIPTION = """
The 20 Newsgroups data set is a collection of approximately 20,000 newsgroup documents, partitioned (nearly) evenly across
20 different newsgroups. The 20 newsgroups collection has become a popular data set for experiments in text applications of
machine learning techniques, such as text classification and text clustering.
"""
_DOWNLOAD_URL = {
"bydate": "http://qwone.com/~jason/20Newsgroups/20news-bydate.tar.gz",
"19997": "http://qwone.com/~jason/20Newsgroups/20news-19997.tar.gz",
"18828": "http://qwone.com/~jason/20Newsgroups/20news-18828.tar.gz",
}
_NEWS_GROUPS = [
"comp.graphics",
"comp.os.ms-windows.misc",
"comp.sys.ibm.pc.hardware",
"comp.sys.mac.hardware",
"comp.windows.x",
"rec.autos",
"rec.motorcycles",
"rec.sport.baseball",
"rec.sport.hockey",
"sci.crypt",
"sci.electronics",
"sci.med",
"sci.space",
"misc.forsale",
"talk.politics.misc",
"talk.politics.guns",
"talk.politics.mideast",
"talk.religion.misc",
"alt.atheism",
"soc.religion.christian",
]
_VERSIONS = {"19997": "1.0.0", "bydate": "2.0.0", "18828": "3.0.0"}
_DESC = {
"19997": "the original, unmodified version.",
"bydate": "sorted by date into training(60%) and test(40%) sets, does not include cross-posts (duplicates) and does not include newsgroup-identifying headers (Xref, Newsgroups, Path, Followup-To, Date)",
"18828": 'does not include cross-posts and includes only the "From" and "Subject" headers.',
}
_CONFIG_NAMES = []
for version in _VERSIONS:
for group in _NEWS_GROUPS:
_CONFIG_NAMES.append(version + "_" + group)
_CONFIG_NAMES = sorted(_CONFIG_NAMES)
class NewsgroupConfig(datasets.BuilderConfig):
"""BuilderConfig for 20Newsgroup."""
def __init__(self, sub_dir, **kwargs):
"""Constructs a 20Newsgroup.
Args:
sub_dirs: str
**kwargs: keyword arguments forwarded to super.
"""
super(NewsgroupConfig, self).__init__(**kwargs)
self.sub_dir = sub_dir
class Newsgroups(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
NewsgroupConfig(
name=name,
description=_DESC[name.split("_")[0]],
sub_dir=name.split("_")[1],
version=datasets.Version(_VERSIONS[name.split("_")[0]]),
)
for name in _CONFIG_NAMES
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION + "\n" + self.config.description,
features=datasets.Features(
{
"text": datasets.Value("string"),
}
),
homepage="http://qwone.com/~jason/20Newsgroups/",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
url = _DOWNLOAD_URL[self.config.name.split("_")[0]]
archive = dl_manager.download(url)
if self.config.name.startswith("bydate"):
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"files_dir": "20news-bydate-train/" + self.config.sub_dir,
"files": dl_manager.iter_archive(archive),
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"files_dir": "20news-bydate-test/" + self.config.sub_dir,
"files": dl_manager.iter_archive(archive),
},
),
]
elif self.config.name.startswith("19997"):
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"files_dir": "20_newsgroups/" + self.config.sub_dir,
"files": dl_manager.iter_archive(archive),
},
)
]
else:
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"files_dir": "20news-18828/" + self.config.sub_dir,
"files": dl_manager.iter_archive(archive),
},
)
]
def _generate_examples(self, files_dir, files):
"""Yields examples."""
for id_, (path, f) in enumerate(files):
if path.startswith(files_dir):
text = f.read().decode("utf-8", errors="ignore")
yield id_, {"text": text}