Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
multi-class-classification
Languages:
English
Size:
100K - 1M
License:
"""TODO(coarse_discourse): Add a description here.""" | |
import json | |
import datasets | |
# TODO(coarse_discourse): BibTeX citation | |
_CITATION = """\ | |
@inproceedings{coarsediscourse, title={Characterizing Online Discussion Using Coarse Discourse Sequences}, author={Zhang, Amy X. and Culbertson, Bryan and Paritosh, Praveen}, booktitle={Proceedings of the 11th International AAAI Conference on Weblogs and Social Media}, series={ICWSM '17}, year={2017}, location = {Montreal, Canada} } | |
""" | |
# TODO(coarse_discourse): | |
_DESCRIPTION = """\ | |
dataset contains discourse annotation and relation on threads from reddit during 2016 | |
""" | |
# From: https://github.com/google-research-datasets/coarse-discourse | |
_URL = "https://raw.githubusercontent.com/google-research-datasets/coarse-discourse/master/coarse_discourse_dataset.json" | |
class CoarseDiscourse(datasets.GeneratorBasedBuilder): | |
"""TODO(coarse_discourse): Short description of my dataset.""" | |
# TODO(coarse_discourse): Set up version. | |
VERSION = datasets.Version("0.1.0") | |
def _info(self): | |
# TODO(coarse_discourse): Specifies the datasets.DatasetInfo object | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# datasets.features.FeatureConnectors | |
features=datasets.Features( | |
{ | |
# These are the features of your dataset like images, labels ... | |
"title": datasets.Value("string"), | |
"is_self_post": datasets.Value("bool"), | |
"subreddit": datasets.Value("string"), | |
"url": datasets.Value("string"), | |
"majority_link": datasets.Value("string"), | |
"is_first_post": datasets.Value("bool"), | |
"majority_type": datasets.Value("string"), | |
"id_post": datasets.Value("string"), | |
"post_depth": datasets.Value("int32"), | |
"in_reply_to": datasets.Value("string"), | |
"annotations": datasets.features.Sequence( | |
{ | |
"annotator": datasets.Value("string"), | |
"link_to_post": datasets.Value("string"), | |
"main_type": datasets.Value("string"), | |
} | |
), | |
} | |
), | |
# If there's a common (input, target) tuple from the features, | |
# specify them here. They'll be used if as_supervised=True in | |
# builder.as_dataset. | |
supervised_keys=None, | |
# Homepage of the dataset for documentation | |
homepage="https://github.com/google-research-datasets/coarse-discourse", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
# TODO(coarse_discourse): Downloads the data and defines the splits | |
# dl_manager is a datasets.download.DownloadManager that can be used to | |
# download and extract URLs | |
data_path = dl_manager.download(_URL) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": data_path, | |
}, | |
), | |
] | |
def _generate_examples(self, filepath): | |
"""Yields examples.""" | |
# TODO(coarse_discourse): Yields (key, example) tuples from the dataset | |
with open(filepath, encoding="utf-8") as f: | |
for id_, row in enumerate(f): | |
data = json.loads(row) | |
url = data.get("url", "") | |
is_self_post = data.get("is_self_post", "") | |
subreddit = data.get("subreddit", "") | |
title = data.get("title", "") | |
posts = data.get("posts", "") | |
for id1, post in enumerate(posts): | |
maj_link = post.get("majority_link", "") | |
maj_type = post.get("majority_type", "") | |
id_post = post.get("id", "") | |
is_first_post = post.get("is_firs_post", "") | |
post_depth = post.get("post_depth", -1) | |
in_reply_to = post.get("in_reply_to", "") | |
annotations = post["annotations"] | |
annotators = [annotation.get("annotator", "") for annotation in annotations] | |
main_types = [annotation.get("main_type", "") for annotation in annotations] | |
link_posts = [annotation.get("linkk_to_post", "") for annotation in annotations] | |
yield str(id_) + "_" + str(id1), { | |
"title": title, | |
"is_self_post": is_self_post, | |
"subreddit": subreddit, | |
"url": url, | |
"majority_link": maj_link, | |
"is_first_post": is_first_post, | |
"majority_type": maj_type, | |
"id_post": id_post, | |
"post_depth": post_depth, | |
"in_reply_to": in_reply_to, | |
"annotations": {"annotator": annotators, "link_to_post": link_posts, "main_type": main_types}, | |
} | |