Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
albertvillanova HF staff commited on
Commit
2a0a12e
1 Parent(s): 831b6f8

Delete legacy JSON metadata

Browse files

Delete legacy `dataset_infos.json`.

Files changed (1) hide show
  1. dataset_infos.json +0 -1
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"mcd1": {"description": "\nThe CFQ dataset (and it's splits) for measuring compositional generalization.\n\nSee https://arxiv.org/abs/1912.09713.pdf for background.\n\nExample usage:\ndata = datasets.load_dataset('cfq/mcd1')\n", "citation": "\n@inproceedings{Keysers2020,\n title={Measuring Compositional Generalization: A Comprehensive Method on\n Realistic Data},\n author={Daniel Keysers and Nathanael Sch\"{a}rli and Nathan Scales and\n Hylke Buisman and Daniel Furrer and Sergii Kashubin and\n Nikola Momchev and Danila Sinopalnikov and Lukasz Stafiniak and\n Tibor Tihon and Dmitry Tsarkov and Xiao Wang and Marc van Zee and\n Olivier Bousquet},\n booktitle={ICLR},\n year={2020},\n url={https://arxiv.org/abs/1912.09713.pdf},\n}\n", "homepage": "https://github.com/google-research/google-research/tree/master/cfq", "license": "CC BY 4.0", "features": {"question": {"dtype": "string", "id": null, "_type": "Value"}, "query": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "question", "output": "query"}, "task_templates": null, "builder_name": "cfq", "config_name": "mcd1", "version": {"version_str": "1.0.1", "description": null, "major": 1, "minor": 0, "patch": 1}, "splits": {"train": {"name": "train", "num_bytes": 37408806, "num_examples": 95743, "dataset_name": "cfq"}, "test": {"name": "test", "num_bytes": 5446503, "num_examples": 11968, "dataset_name": "cfq"}}, "download_checksums": {"https://storage.googleapis.com/cfq_dataset/cfq.tar.gz": {"num_bytes": 267599061, "checksum": "979d719271eae12611643b89151f639d94092800e7e71f2d23a754c43f3eb1ba"}}, "download_size": 267599061, "post_processing_size": null, "dataset_size": 42855309, "size_in_bytes": 310454370}, "mcd2": {"description": "\nThe CFQ dataset (and it's splits) for measuring compositional generalization.\n\nSee https://arxiv.org/abs/1912.09713.pdf for background.\n\nExample usage:\ndata = datasets.load_dataset('cfq/mcd1')\n", "citation": "\n@inproceedings{Keysers2020,\n title={Measuring Compositional Generalization: A Comprehensive Method on\n Realistic Data},\n author={Daniel Keysers and Nathanael Sch\"{a}rli and Nathan Scales and\n Hylke Buisman and Daniel Furrer and Sergii Kashubin and\n Nikola Momchev and Danila Sinopalnikov and Lukasz Stafiniak and\n Tibor Tihon and Dmitry Tsarkov and Xiao Wang and Marc van Zee and\n Olivier Bousquet},\n booktitle={ICLR},\n year={2020},\n url={https://arxiv.org/abs/1912.09713.pdf},\n}\n", "homepage": "https://github.com/google-research/google-research/tree/master/cfq", "license": "CC BY 4.0", "features": {"question": {"dtype": "string", "id": null, "_type": "Value"}, "query": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "question", "output": "query"}, "task_templates": null, "builder_name": "cfq", "config_name": "mcd2", "version": {"version_str": "1.0.1", "description": null, "major": 1, "minor": 0, "patch": 1}, "splits": {"train": {"name": "train", "num_bytes": 39424657, "num_examples": 95743, "dataset_name": "cfq"}, "test": {"name": "test", "num_bytes": 5314019, "num_examples": 11968, "dataset_name": "cfq"}}, "download_checksums": {"https://storage.googleapis.com/cfq_dataset/cfq.tar.gz": {"num_bytes": 267599061, "checksum": "979d719271eae12611643b89151f639d94092800e7e71f2d23a754c43f3eb1ba"}}, "download_size": 267599061, "post_processing_size": null, "dataset_size": 44738676, "size_in_bytes": 312337737}, "mcd3": {"description": "\nThe CFQ dataset (and it's splits) for measuring compositional generalization.\n\nSee https://arxiv.org/abs/1912.09713.pdf for background.\n\nExample usage:\ndata = datasets.load_dataset('cfq/mcd1')\n", "citation": "\n@inproceedings{Keysers2020,\n title={Measuring Compositional Generalization: A Comprehensive Method on\n Realistic Data},\n author={Daniel Keysers and Nathanael Sch\"{a}rli and Nathan Scales and\n Hylke Buisman and Daniel Furrer and Sergii Kashubin and\n Nikola Momchev and Danila Sinopalnikov and Lukasz Stafiniak and\n Tibor Tihon and Dmitry Tsarkov and Xiao Wang and Marc van Zee and\n Olivier Bousquet},\n booktitle={ICLR},\n year={2020},\n url={https://arxiv.org/abs/1912.09713.pdf},\n}\n", "homepage": "https://github.com/google-research/google-research/tree/master/cfq", "license": "CC BY 4.0", "features": {"question": {"dtype": "string", "id": null, "_type": "Value"}, "query": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "question", "output": "query"}, "task_templates": null, "builder_name": "cfq", "config_name": "mcd3", "version": {"version_str": "1.0.1", "description": null, "major": 1, "minor": 0, "patch": 1}, "splits": {"train": {"name": "train", "num_bytes": 38316345, "num_examples": 95743, "dataset_name": "cfq"}, "test": {"name": "test", "num_bytes": 5244503, "num_examples": 11968, "dataset_name": "cfq"}}, "download_checksums": {"https://storage.googleapis.com/cfq_dataset/cfq.tar.gz": {"num_bytes": 267599061, "checksum": "979d719271eae12611643b89151f639d94092800e7e71f2d23a754c43f3eb1ba"}}, "download_size": 267599061, "post_processing_size": null, "dataset_size": 43560848, "size_in_bytes": 311159909}, "question_complexity_split": {"description": "\nThe CFQ dataset (and it's splits) for measuring compositional generalization.\n\nSee https://arxiv.org/abs/1912.09713.pdf for background.\n\nExample usage:\ndata = datasets.load_dataset('cfq/mcd1')\n", "citation": "\n@inproceedings{Keysers2020,\n title={Measuring Compositional Generalization: A Comprehensive Method on\n Realistic Data},\n author={Daniel Keysers and Nathanael Sch\"{a}rli and Nathan Scales and\n Hylke Buisman and Daniel Furrer and Sergii Kashubin and\n Nikola Momchev and Danila Sinopalnikov and Lukasz Stafiniak and\n Tibor Tihon and Dmitry Tsarkov and Xiao Wang and Marc van Zee and\n Olivier Bousquet},\n booktitle={ICLR},\n year={2020},\n url={https://arxiv.org/abs/1912.09713.pdf},\n}\n", "homepage": "https://github.com/google-research/google-research/tree/master/cfq", "license": "CC BY 4.0", "features": {"question": {"dtype": "string", "id": null, "_type": "Value"}, "query": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "question", "output": "query"}, "task_templates": null, "builder_name": "cfq", "config_name": "question_complexity_split", "version": {"version_str": "1.0.1", "description": null, "major": 1, "minor": 0, "patch": 1}, "splits": {"train": {"name": "train", "num_bytes": 39989433, "num_examples": 98999, "dataset_name": "cfq"}, "test": {"name": "test", "num_bytes": 5781561, "num_examples": 10340, "dataset_name": "cfq"}}, "download_checksums": {"https://storage.googleapis.com/cfq_dataset/cfq.tar.gz": {"num_bytes": 267599061, "checksum": "979d719271eae12611643b89151f639d94092800e7e71f2d23a754c43f3eb1ba"}}, "download_size": 267599061, "post_processing_size": null, "dataset_size": 45770994, "size_in_bytes": 313370055}, "question_pattern_split": {"description": "\nThe CFQ dataset (and it's splits) for measuring compositional generalization.\n\nSee https://arxiv.org/abs/1912.09713.pdf for background.\n\nExample usage:\ndata = datasets.load_dataset('cfq/mcd1')\n", "citation": "\n@inproceedings{Keysers2020,\n title={Measuring Compositional Generalization: A Comprehensive Method on\n Realistic Data},\n author={Daniel Keysers and Nathanael Sch\"{a}rli and Nathan Scales and\n Hylke Buisman and Daniel Furrer and Sergii Kashubin and\n Nikola Momchev and Danila Sinopalnikov and Lukasz Stafiniak and\n Tibor Tihon and Dmitry Tsarkov and Xiao Wang and Marc van Zee and\n Olivier Bousquet},\n booktitle={ICLR},\n year={2020},\n url={https://arxiv.org/abs/1912.09713.pdf},\n}\n", "homepage": "https://github.com/google-research/google-research/tree/master/cfq", "license": "CC BY 4.0", "features": {"question": {"dtype": "string", "id": null, "_type": "Value"}, "query": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "question", "output": "query"}, "task_templates": null, "builder_name": "cfq", "config_name": "question_pattern_split", "version": {"version_str": "1.0.1", "description": null, "major": 1, "minor": 0, "patch": 1}, "splits": {"train": {"name": "train", "num_bytes": 41217350, "num_examples": 95654, "dataset_name": "cfq"}, "test": {"name": "test", "num_bytes": 5179936, "num_examples": 11909, "dataset_name": "cfq"}}, "download_checksums": {"https://storage.googleapis.com/cfq_dataset/cfq.tar.gz": {"num_bytes": 267599061, "checksum": "979d719271eae12611643b89151f639d94092800e7e71f2d23a754c43f3eb1ba"}}, "download_size": 267599061, "post_processing_size": null, "dataset_size": 46397286, "size_in_bytes": 313996347}, "query_complexity_split": {"description": "\nThe CFQ dataset (and it's splits) for measuring compositional generalization.\n\nSee https://arxiv.org/abs/1912.09713.pdf for background.\n\nExample usage:\ndata = datasets.load_dataset('cfq/mcd1')\n", "citation": "\n@inproceedings{Keysers2020,\n title={Measuring Compositional Generalization: A Comprehensive Method on\n Realistic Data},\n author={Daniel Keysers and Nathanael Sch\"{a}rli and Nathan Scales and\n Hylke Buisman and Daniel Furrer and Sergii Kashubin and\n Nikola Momchev and Danila Sinopalnikov and Lukasz Stafiniak and\n Tibor Tihon and Dmitry Tsarkov and Xiao Wang and Marc van Zee and\n Olivier Bousquet},\n booktitle={ICLR},\n year={2020},\n url={https://arxiv.org/abs/1912.09713.pdf},\n}\n", "homepage": "https://github.com/google-research/google-research/tree/master/cfq", "license": "CC BY 4.0", "features": {"question": {"dtype": "string", "id": null, "_type": "Value"}, "query": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "question", "output": "query"}, "task_templates": null, "builder_name": "cfq", "config_name": "query_complexity_split", "version": {"version_str": "1.0.1", "description": null, "major": 1, "minor": 0, "patch": 1}, "splits": {"train": {"name": "train", "num_bytes": 40270175, "num_examples": 100654, "dataset_name": "cfq"}, "test": {"name": "test", "num_bytes": 5634924, "num_examples": 9512, "dataset_name": "cfq"}}, "download_checksums": {"https://storage.googleapis.com/cfq_dataset/cfq.tar.gz": {"num_bytes": 267599061, "checksum": "979d719271eae12611643b89151f639d94092800e7e71f2d23a754c43f3eb1ba"}}, "download_size": 267599061, "post_processing_size": null, "dataset_size": 45905099, "size_in_bytes": 313504160}, "query_pattern_split": {"description": "\nThe CFQ dataset (and it's splits) for measuring compositional generalization.\n\nSee https://arxiv.org/abs/1912.09713.pdf for background.\n\nExample usage:\ndata = datasets.load_dataset('cfq/mcd1')\n", "citation": "\n@inproceedings{Keysers2020,\n title={Measuring Compositional Generalization: A Comprehensive Method on\n Realistic Data},\n author={Daniel Keysers and Nathanael Sch\"{a}rli and Nathan Scales and\n Hylke Buisman and Daniel Furrer and Sergii Kashubin and\n Nikola Momchev and Danila Sinopalnikov and Lukasz Stafiniak and\n Tibor Tihon and Dmitry Tsarkov and Xiao Wang and Marc van Zee and\n Olivier Bousquet},\n booktitle={ICLR},\n year={2020},\n url={https://arxiv.org/abs/1912.09713.pdf},\n}\n", "homepage": "https://github.com/google-research/google-research/tree/master/cfq", "license": "CC BY 4.0", "features": {"question": {"dtype": "string", "id": null, "_type": "Value"}, "query": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "question", "output": "query"}, "task_templates": null, "builder_name": "cfq", "config_name": "query_pattern_split", "version": {"version_str": "1.0.1", "description": null, "major": 1, "minor": 0, "patch": 1}, "splits": {"train": {"name": "train", "num_bytes": 40811284, "num_examples": 94600, "dataset_name": "cfq"}, "test": {"name": "test", "num_bytes": 5268358, "num_examples": 12589, "dataset_name": "cfq"}}, "download_checksums": {"https://storage.googleapis.com/cfq_dataset/cfq.tar.gz": {"num_bytes": 267599061, "checksum": "979d719271eae12611643b89151f639d94092800e7e71f2d23a754c43f3eb1ba"}}, "download_size": 267599061, "post_processing_size": null, "dataset_size": 46079642, "size_in_bytes": 313678703}, "random_split": {"description": "\nThe CFQ dataset (and it's splits) for measuring compositional generalization.\n\nSee https://arxiv.org/abs/1912.09713.pdf for background.\n\nExample usage:\ndata = datasets.load_dataset('cfq/mcd1')\n", "citation": "\n@inproceedings{Keysers2020,\n title={Measuring Compositional Generalization: A Comprehensive Method on\n Realistic Data},\n author={Daniel Keysers and Nathanael Sch\"{a}rli and Nathan Scales and\n Hylke Buisman and Daniel Furrer and Sergii Kashubin and\n Nikola Momchev and Danila Sinopalnikov and Lukasz Stafiniak and\n Tibor Tihon and Dmitry Tsarkov and Xiao Wang and Marc van Zee and\n Olivier Bousquet},\n booktitle={ICLR},\n year={2020},\n url={https://arxiv.org/abs/1912.09713.pdf},\n}\n", "homepage": "https://github.com/google-research/google-research/tree/master/cfq", "license": "CC BY 4.0", "features": {"question": {"dtype": "string", "id": null, "_type": "Value"}, "query": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "question", "output": "query"}, "task_templates": null, "builder_name": "cfq", "config_name": "random_split", "version": {"version_str": "1.0.1", "description": null, "major": 1, "minor": 0, "patch": 1}, "splits": {"train": {"name": "train", "num_bytes": 41279218, "num_examples": 95744, "dataset_name": "cfq"}, "test": {"name": "test", "num_bytes": 5164923, "num_examples": 11967, "dataset_name": "cfq"}}, "download_checksums": {"https://storage.googleapis.com/cfq_dataset/cfq.tar.gz": {"num_bytes": 267599061, "checksum": "979d719271eae12611643b89151f639d94092800e7e71f2d23a754c43f3eb1ba"}}, "download_size": 267599061, "post_processing_size": null, "dataset_size": 46444141, "size_in_bytes": 314043202}}