|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""AQuaMuSe is a novel scalable approach to automatically mine dual query based multi-document summarization datasets for extractive and abstractive summaries using question answering dataset (Google Natural Questions) and large document corpora (Common Crawl)""" |
|
|
|
from __future__ import absolute_import, division, print_function |
|
|
|
import os |
|
from os import listdir |
|
from os.path import isfile, join |
|
|
|
import tensorflow as tf |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@misc{kulkarni2020aquamuse, |
|
title={AQuaMuSe: Automatically Generating Datasets for Query-Based Multi-Document Summarization}, |
|
author={Sayali Kulkarni and Sheide Chammas and Wan Zhu and Fei Sha and Eugene Ie}, |
|
year={2020}, |
|
eprint={2010.12694}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """AQuaMuSe is a novel scalable approach to automatically mine dual query based multi-document summarization datasets for extractive and abstractive summaries using question answering dataset (Google Natural Questions) and large document corpora (Common Crawl)""" |
|
|
|
_HOMEPAGE = "https://github.com/google-research-datasets/aquamuse" |
|
|
|
_LICENSE = "" |
|
|
|
zipped_data_url = "https://github.com/google-research-datasets/aquamuse/raw/main/v2/aquamuse_v2.zip" |
|
|
|
|
|
class Aquamuse(datasets.GeneratorBasedBuilder): |
|
"""Dataset for Query-based Multi-Document Summarization""" |
|
|
|
VERSION = datasets.Version("2.3.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="abstractive", version=VERSION, description="Abstractive query-based multi-document summarization" |
|
), |
|
datasets.BuilderConfig( |
|
name="extractive", version=VERSION, description="Extractive query-based multi-document summarization" |
|
), |
|
] |
|
|
|
|
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"query": datasets.Value("string"), |
|
"input_urls": datasets.Sequence(datasets.Value("string")), |
|
"target": datasets.Value("string"), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
if self.config.name == "abstractive": |
|
data_dir = dl_manager.download_and_extract(zipped_data_url) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "v2.3/abstractive/train/"), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "v2.3/abstractive/test/"), |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "v2.3/abstractive/dev/"), |
|
"split": "dev", |
|
}, |
|
), |
|
] |
|
|
|
else: |
|
data_dir = dl_manager.download_and_extract(zipped_data_url) |
|
print(data_dir) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "v2.3/extractive/train/"), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "v2.3/extractive/test/"), |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "v2.3/extractive/dev/"), |
|
"split": "dev", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
""" Yields examples. """ |
|
filepath = [join(filepath, f) for f in listdir(filepath) if isfile(join(filepath, f))] |
|
filepath = sorted(filepath) |
|
raw_dataset = tf.data.TFRecordDataset(filepath) |
|
for id_, raw_record in enumerate(raw_dataset): |
|
example = tf.train.Example() |
|
example.ParseFromString(raw_record.numpy()) |
|
yield id_, { |
|
"query": example.features.feature["query"].bytes_list.value[0].decode(), |
|
"input_urls": example.features.feature["input_urls"].bytes_list.value[0].decode().split("<EOD>"), |
|
"target": example.features.feature["target"].bytes_list.value[0].decode(), |
|
} |
|
|