fold_prediction_rag / fold_prediction_rag.py
Pan6461188's picture
set msa as list; label as tensor2
5c0af3f
#-*- coding:utf-8 -*-
# import sys, os, shutil, re, logging, subprocess, string, io, argparse, bisect, concurrent, gzip, zipfile, tarfile, json, pickle, time, datetime, random, math, copy, itertools, functools, collections, multiprocessing, threading, queue, signal, inspect, warnings, distutils.spawn
import sys
import os
import pickle
import re
import torch
import random
import gzip
from os.path import exists, join, getsize, isfile, isdir, abspath, basename
from typing import Dict, Union, Optional, List, Tuple, Mapping
import numpy as np
import pandas as pd
from tqdm.auto import trange, tqdm
from concurrent.futures import ThreadPoolExecutor, as_completed
from typing import Dict, Union, Optional, List, Tuple, Mapping
import datasets
def get_md5(aa_str):
"""
Calculate MD5 values for protein sequence
"""
import hashlib
assert isinstance(aa_str, str), aa_str
aa_str = aa_str.upper()
return hashlib.md5(aa_str.encode('utf-8')).hexdigest()
def load_fasta(seqFn, rem_tVersion=False, load_annotation=False, full_line_as_id=False):
"""
seqFn -- Fasta file or input handle (with readline implementation)
rem_tVersion -- Remove version information. ENST000000022311.2 => ENST000000022311
load_annotation -- Load sequence annotation
full_line_as_id -- Use the full head line (starts with >) as sequence ID. Can not be specified simutanouly with load_annotation
Return:
{tid1: seq1, ...} if load_annotation==False
{tid1: seq1, ...},{tid1: annot1, ...} if load_annotation==True
"""
if load_annotation and full_line_as_id:
raise RuntimeError("Error: load_annotation and full_line_as_id can not be specified simutanouly")
if rem_tVersion and full_line_as_id:
raise RuntimeError("Error: rem_tVersion and full_line_as_id can not be specified simutanouly")
fasta = {}
annotation = {}
cur_tid = ''
cur_seq = ''
if isinstance(seqFn, str):
IN = open(seqFn)
elif hasattr(seqFn, 'readline'):
IN = seqFn
else:
raise RuntimeError(f"Expected seqFn: {type(seqFn)}")
for line in IN:
if line[0] == '>':
if cur_tid != '':
fasta[cur_tid] = re.sub(r"\s", "", cur_seq)
cur_seq = ''
data = line[1:-1].split(None, 1)
cur_tid = line[1:-1] if full_line_as_id else data[0]
annotation[cur_tid] = data[1] if len(data)==2 else ""
if rem_tVersion and '.' in cur_tid:
cur_tid = ".".join(cur_tid.split(".")[:-1])
elif cur_tid != '':
cur_seq += line.rstrip()
if isinstance(seqFn, str):
IN.close()
if cur_seq != '':
fasta[cur_tid] = re.sub(r"\s", "", cur_seq)
if load_annotation:
return fasta, annotation
else:
return fasta
def load_msa_txt(file_or_stream, load_id=False, load_annot=False, sort=False):
"""
Read msa txt file
Parmeters
--------------
file_or_stream: file or stream to read (with read method)
load_id: read identity and return
Return
--------------
msa: list of msa sequences, the first sequence in msa is the query sequence
id_arr: Identity of msa sequences
annotations: Annotations of msa sequences
"""
msa = []
id_arr = []
annotations = []
if hasattr(file_or_stream, 'read'):
lines = file_or_stream.read().strip().split('\n')
elif file_or_stream.endswith('.gz'):
with gzip.open(file_or_stream) as IN:
lines = IN.read().decode().strip().split('\n')
else:
with open(file_or_stream) as IN:
lines = IN.read().strip().split('\n')
# lines = open(file_or_stream).read().strip().split('\n')
for idx,line in enumerate(lines):
data = line.strip().split()
if idx == 0:
assert len(data) == 1, f"Expect 1 element for the 1st line, but got {data} in {file_or_stream}"
q_seq = data[0]
else:
if len(data) >= 2:
id_arr.append( float(data[1]) )
else:
assert len(q_seq) == len(data[0])
id_ = round(np.mean([ r1==r2 for r1,r2 in zip(q_seq, data[0]) ]), 3)
id_arr.append(id_)
msa.append( data[0] )
if len(data) >= 3:
annot = " ".join(data[2:])
annotations.append( annot )
else:
annotations.append(None)
id_arr = np.array(id_arr, dtype=np.float64)
if sort:
id_order = np.argsort(id_arr)[::-1]
msa = [ msa[i] for i in id_order ]
id_arr = id_arr[id_order]
annotations = [ annotations[i] for i in id_order ]
msa = [q_seq] + msa
outputs = [ msa ]
if load_id:
outputs.append( id_arr )
if load_annot:
outputs.append( annotations )
if len(outputs) == 1:
return outputs[0]
return outputs
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """
"""
# You can copy an official description
_DESCRIPTION = """
Fold class prediction is a scientific classification task that assigns protein sequences to one of 1,195 known folds. The primary application of this task lies in the identification of novel remote homologs among proteins of interest, such as emerging antibiotic-resistant genes and industrial enzymes. The study of protein fold holds great significance in fields like proteomics and structural biology, as it facilitates the analysis of folding patterns, leading to the discovery of remote homologies and advancements in disease research.
"""
_HOMEPAGE = "https://huggingface.co/datasets/genbio-ai/fold_prediction_rag"
_LICENSE = "Apache license 2.0"
class DownStreamConfig(datasets.BuilderConfig):
"""BuilderConfig for downstream taks dataset."""
def __init__(self, *args, **kwargs):
"""BuilderConfig downstream tasks dataset.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super().__init__(*args, name=f"downstream", **kwargs)
class DownStreamTasks(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIG_CLASS = DownStreamConfig
BUILDER_CONFIGS = [ DownStreamConfig() ]
DEFAULT_CONFIG_NAME = None
def _info(self):
features = datasets.Features(
{
"seq": datasets.Value("string"),
"label": datasets.Value("int32"),
"msa": datasets.Sequence(datasets.Value("string")),
"str_emb": datasets.Array2D(shape=(None, 384), dtype='float32'),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(
self, dl_manager: datasets.DownloadManager
) -> List[datasets.SplitGenerator]:
# breakpoint()
train_parquet_file = dl_manager.download(f"data/train-00000-of-00001.parquet")
valid_parquet_file = dl_manager.download(f"data/valid-00000-of-00001.parquet")
test_parquet_file = dl_manager.download(f"data/test-00000-of-00001.parquet")
msa_path = dl_manager.download_and_extract(f"msa.tar")
str_file = dl_manager.download(f"md5_to_str.fasta")
codebook_file = dl_manager.download(f"codebook.pt")
assert os.path.exists(join(msa_path, 'msa'))
msa_path = join(msa_path, 'msa')
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"parquet_file": train_parquet_file,
"msa_path": msa_path,
"str_file": str_file,
"codebook_file": codebook_file
}
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"parquet_file": valid_parquet_file,
"msa_path": msa_path,
"str_file": str_file,
"codebook_file": codebook_file
}
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"parquet_file": test_parquet_file,
"msa_path": msa_path,
"str_file": str_file,
"codebook_file": codebook_file
}
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, parquet_file, msa_path, str_file, codebook_file):
dataset = datasets.Dataset.from_parquet(parquet_file)
md5_to_str = load_fasta(str_file)
codebook = torch.load(codebook_file, 'cpu', weights_only=True).numpy()
for key, item in enumerate(dataset):
seq = item['seq']
label = item['label']
md5_val = get_md5(seq)
if md5_val not in md5_to_str or md5_to_str[md5_val] == "":
str_emb = np.zeros([len(seq), 384], dtype=np.float32)
else:
str_toks = np.array([ int(x) for x in md5_to_str[md5_val].split('-')])
str_emb = codebook[str_toks]
msa = load_msa_txt(join(msa_path, md5_val+'.txt.gz'))
assert len(msa[0]) == len(seq), f"Error: {len(msa[0])} != {len(seq)}"
assert len(msa[0]) == str_emb.shape[0], f"Error: {len(msa[0])} != {str_emb.shape[0]}"
# breakpoint()
yield key, {
"seq": seq,
"label": label,
"msa": msa,
"str_emb": str_emb
}
def _as_dataset(
self,
split: Optional[datasets.Split] = None,
**kwargs
) -> datasets.Dataset:
dataset = super()._as_dataset(split=split, **kwargs)
dataset.set_format(
type="numpy",
columns=["str_emb"],
output_all_columns=True
)
return dataset