|
|
|
|
|
|
|
import sys |
|
import os |
|
import pickle |
|
import re |
|
import torch |
|
import random |
|
import gzip |
|
from os.path import exists, join, getsize, isfile, isdir, abspath, basename |
|
from typing import Dict, Union, Optional, List, Tuple, Mapping |
|
import numpy as np |
|
import pandas as pd |
|
from tqdm.auto import trange, tqdm |
|
from concurrent.futures import ThreadPoolExecutor, as_completed |
|
from typing import Dict, Union, Optional, List, Tuple, Mapping |
|
import datasets |
|
|
|
def get_md5(aa_str): |
|
""" |
|
Calculate MD5 values for protein sequence |
|
""" |
|
import hashlib |
|
assert isinstance(aa_str, str), aa_str |
|
|
|
aa_str = aa_str.upper() |
|
return hashlib.md5(aa_str.encode('utf-8')).hexdigest() |
|
|
|
def load_fasta(seqFn, rem_tVersion=False, load_annotation=False, full_line_as_id=False): |
|
""" |
|
seqFn -- Fasta file or input handle (with readline implementation) |
|
rem_tVersion -- Remove version information. ENST000000022311.2 => ENST000000022311 |
|
load_annotation -- Load sequence annotation |
|
full_line_as_id -- Use the full head line (starts with >) as sequence ID. Can not be specified simutanouly with load_annotation |
|
|
|
Return: |
|
{tid1: seq1, ...} if load_annotation==False |
|
{tid1: seq1, ...},{tid1: annot1, ...} if load_annotation==True |
|
""" |
|
if load_annotation and full_line_as_id: |
|
raise RuntimeError("Error: load_annotation and full_line_as_id can not be specified simutanouly") |
|
if rem_tVersion and full_line_as_id: |
|
raise RuntimeError("Error: rem_tVersion and full_line_as_id can not be specified simutanouly") |
|
|
|
fasta = {} |
|
annotation = {} |
|
cur_tid = '' |
|
cur_seq = '' |
|
|
|
if isinstance(seqFn, str): |
|
IN = open(seqFn) |
|
elif hasattr(seqFn, 'readline'): |
|
IN = seqFn |
|
else: |
|
raise RuntimeError(f"Expected seqFn: {type(seqFn)}") |
|
for line in IN: |
|
if line[0] == '>': |
|
if cur_tid != '': |
|
fasta[cur_tid] = re.sub(r"\s", "", cur_seq) |
|
cur_seq = '' |
|
data = line[1:-1].split(None, 1) |
|
cur_tid = line[1:-1] if full_line_as_id else data[0] |
|
annotation[cur_tid] = data[1] if len(data)==2 else "" |
|
if rem_tVersion and '.' in cur_tid: |
|
cur_tid = ".".join(cur_tid.split(".")[:-1]) |
|
elif cur_tid != '': |
|
cur_seq += line.rstrip() |
|
|
|
if isinstance(seqFn, str): |
|
IN.close() |
|
|
|
if cur_seq != '': |
|
fasta[cur_tid] = re.sub(r"\s", "", cur_seq) |
|
|
|
if load_annotation: |
|
return fasta, annotation |
|
else: |
|
return fasta |
|
|
|
def load_msa_txt(file_or_stream, load_id=False, load_annot=False, sort=False): |
|
""" |
|
Read msa txt file |
|
|
|
Parmeters |
|
-------------- |
|
file_or_stream: file or stream to read (with read method) |
|
load_id: read identity and return |
|
|
|
Return |
|
-------------- |
|
msa: list of msa sequences, the first sequence in msa is the query sequence |
|
id_arr: Identity of msa sequences |
|
annotations: Annotations of msa sequences |
|
""" |
|
msa = [] |
|
id_arr = [] |
|
annotations = [] |
|
|
|
if hasattr(file_or_stream, 'read'): |
|
lines = file_or_stream.read().strip().split('\n') |
|
elif file_or_stream.endswith('.gz'): |
|
with gzip.open(file_or_stream) as IN: |
|
lines = IN.read().decode().strip().split('\n') |
|
else: |
|
with open(file_or_stream) as IN: |
|
lines = IN.read().strip().split('\n') |
|
|
|
|
|
for idx,line in enumerate(lines): |
|
data = line.strip().split() |
|
if idx == 0: |
|
assert len(data) == 1, f"Expect 1 element for the 1st line, but got {data} in {file_or_stream}" |
|
q_seq = data[0] |
|
else: |
|
if len(data) >= 2: |
|
id_arr.append( float(data[1]) ) |
|
else: |
|
assert len(q_seq) == len(data[0]) |
|
id_ = round(np.mean([ r1==r2 for r1,r2 in zip(q_seq, data[0]) ]), 3) |
|
id_arr.append(id_) |
|
msa.append( data[0] ) |
|
if len(data) >= 3: |
|
annot = " ".join(data[2:]) |
|
annotations.append( annot ) |
|
else: |
|
annotations.append(None) |
|
|
|
id_arr = np.array(id_arr, dtype=np.float64) |
|
if sort: |
|
id_order = np.argsort(id_arr)[::-1] |
|
msa = [ msa[i] for i in id_order ] |
|
id_arr = id_arr[id_order] |
|
annotations = [ annotations[i] for i in id_order ] |
|
msa = [q_seq] + msa |
|
|
|
outputs = [ msa ] |
|
if load_id: |
|
outputs.append( id_arr ) |
|
if load_annot: |
|
outputs.append( annotations ) |
|
if len(outputs) == 1: |
|
return outputs[0] |
|
return outputs |
|
|
|
|
|
_CITATION = """ |
|
""" |
|
|
|
|
|
_DESCRIPTION = """ |
|
Fold class prediction is a scientific classification task that assigns protein sequences to one of 1,195 known folds. The primary application of this task lies in the identification of novel remote homologs among proteins of interest, such as emerging antibiotic-resistant genes and industrial enzymes. The study of protein fold holds great significance in fields like proteomics and structural biology, as it facilitates the analysis of folding patterns, leading to the discovery of remote homologies and advancements in disease research. |
|
""" |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/genbio-ai/fold_prediction_rag" |
|
|
|
_LICENSE = "Apache license 2.0" |
|
|
|
class DownStreamConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for downstream taks dataset.""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
"""BuilderConfig downstream tasks dataset. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super().__init__(*args, name=f"downstream", **kwargs) |
|
|
|
class DownStreamTasks(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.1.0") |
|
BUILDER_CONFIG_CLASS = DownStreamConfig |
|
BUILDER_CONFIGS = [ DownStreamConfig() ] |
|
DEFAULT_CONFIG_NAME = None |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"seq": datasets.Value("string"), |
|
"label": datasets.Value("int32"), |
|
"msa": datasets.Sequence(datasets.Value("string")), |
|
"str_emb": datasets.Array2D(shape=(None, 384), dtype='float32'), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
|
|
homepage=_HOMEPAGE, |
|
|
|
license=_LICENSE, |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators( |
|
self, dl_manager: datasets.DownloadManager |
|
) -> List[datasets.SplitGenerator]: |
|
|
|
train_parquet_file = dl_manager.download(f"data/train-00000-of-00001.parquet") |
|
valid_parquet_file = dl_manager.download(f"data/valid-00000-of-00001.parquet") |
|
test_parquet_file = dl_manager.download(f"data/test-00000-of-00001.parquet") |
|
msa_path = dl_manager.download_and_extract(f"msa.tar") |
|
str_file = dl_manager.download(f"md5_to_str.fasta") |
|
codebook_file = dl_manager.download(f"codebook.pt") |
|
|
|
assert os.path.exists(join(msa_path, 'msa')) |
|
msa_path = join(msa_path, 'msa') |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"parquet_file": train_parquet_file, |
|
"msa_path": msa_path, |
|
"str_file": str_file, |
|
"codebook_file": codebook_file |
|
} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"parquet_file": valid_parquet_file, |
|
"msa_path": msa_path, |
|
"str_file": str_file, |
|
"codebook_file": codebook_file |
|
} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"parquet_file": test_parquet_file, |
|
"msa_path": msa_path, |
|
"str_file": str_file, |
|
"codebook_file": codebook_file |
|
} |
|
), |
|
] |
|
|
|
|
|
def _generate_examples(self, parquet_file, msa_path, str_file, codebook_file): |
|
|
|
dataset = datasets.Dataset.from_parquet(parquet_file) |
|
md5_to_str = load_fasta(str_file) |
|
codebook = torch.load(codebook_file, 'cpu', weights_only=True).numpy() |
|
|
|
for key, item in enumerate(dataset): |
|
seq = item['seq'] |
|
label = item['label'] |
|
md5_val = get_md5(seq) |
|
if md5_val not in md5_to_str or md5_to_str[md5_val] == "": |
|
str_emb = np.zeros([len(seq), 384], dtype=np.float32) |
|
else: |
|
str_toks = np.array([ int(x) for x in md5_to_str[md5_val].split('-')]) |
|
str_emb = codebook[str_toks] |
|
|
|
msa = load_msa_txt(join(msa_path, md5_val+'.txt.gz')) |
|
assert len(msa[0]) == len(seq), f"Error: {len(msa[0])} != {len(seq)}" |
|
assert len(msa[0]) == str_emb.shape[0], f"Error: {len(msa[0])} != {str_emb.shape[0]}" |
|
|
|
yield key, { |
|
"seq": seq, |
|
"label": label, |
|
"msa": msa, |
|
"str_emb": str_emb |
|
} |
|
|
|
def _as_dataset( |
|
self, |
|
split: Optional[datasets.Split] = None, |
|
**kwargs |
|
) -> datasets.Dataset: |
|
dataset = super()._as_dataset(split=split, **kwargs) |
|
dataset.set_format( |
|
type="numpy", |
|
columns=["str_emb"], |
|
output_all_columns=True |
|
) |
|
return dataset |
|
|