|
""" |
|
This code is licensed under CC-BY-4.0 from the original work by shunk031. |
|
The code is adapted from https://huggingface.co/datasets/shunk031/JGLUE/blob/main/JGLUE.py |
|
with minor modifications to the code structure. |
|
This codebase provides pre-processing functionality for the MARC-ja dataset in the Japanese GLUE benchmark. |
|
The original code can be found at https://github.com/yahoojapan/JGLUE/blob/main/preprocess/marc-ja/scripts/marc-ja.py. |
|
""" |
|
|
|
import random |
|
import warnings |
|
from typing import Dict, List, Optional, Union |
|
import string |
|
|
|
import datasets as ds |
|
import pandas as pd |
|
|
|
|
|
class MarcJaConfig(ds.BuilderConfig): |
|
def __init__( |
|
self, |
|
name: str = "MARC-ja", |
|
is_han_to_zen: bool = False, |
|
max_instance_num: Optional[int] = None, |
|
max_char_length: int = 500, |
|
remove_netural: bool = True, |
|
train_ratio: float = 0.94, |
|
val_ratio: float = 0.03, |
|
test_ratio: float = 0.03, |
|
output_testset: bool = False, |
|
filter_review_id_list_valid: bool = True, |
|
label_conv_review_id_list_valid: bool = True, |
|
version: Optional[Union[ds.utils.Version, str]] = ds.utils.Version("0.0.0"), |
|
data_dir: Optional[str] = None, |
|
data_files: Optional[ds.data_files.DataFilesDict] = None, |
|
description: Optional[str] = None, |
|
) -> None: |
|
super().__init__( |
|
name=name, |
|
version=version, |
|
data_dir=data_dir, |
|
data_files=data_files, |
|
description=description, |
|
) |
|
if train_ratio + val_ratio + test_ratio != 1.0: |
|
raise ValueError( |
|
"train_ratio + val_ratio + test_ratio should be 1.0, " |
|
f"but got {train_ratio} + {val_ratio} + {test_ratio} = {train_ratio + val_ratio + test_ratio}" |
|
) |
|
|
|
self.train_ratio = train_ratio |
|
self.val_ratio = val_ratio |
|
self.test_ratio = test_ratio |
|
|
|
self.is_han_to_zen = is_han_to_zen |
|
self.max_instance_num = max_instance_num |
|
self.max_char_length = max_char_length |
|
self.remove_netural = remove_netural |
|
self.output_testset = output_testset |
|
|
|
self.filter_review_id_list_valid = filter_review_id_list_valid |
|
self.label_conv_review_id_list_valid = label_conv_review_id_list_valid |
|
|
|
|
|
def get_label(rating: int, remove_netural: bool = False) -> Optional[str]: |
|
if rating >= 4: |
|
return "positive" |
|
elif rating <= 2: |
|
return "negative" |
|
else: |
|
if remove_netural: |
|
return None |
|
else: |
|
return "neutral" |
|
|
|
|
|
def is_filtered_by_ascii_rate(text: str, threshold: float = 0.9) -> bool: |
|
ascii_letters = set(string.printable) |
|
rate = sum(c in ascii_letters for c in text) / len(text) |
|
return rate >= threshold |
|
|
|
|
|
def shuffle_dataframe(df: pd.DataFrame) -> pd.DataFrame: |
|
instances = df.to_dict(orient="records") |
|
random.seed(1) |
|
random.shuffle(instances) |
|
return pd.DataFrame(instances) |
|
|
|
|
|
def get_filter_review_id_list( |
|
filter_review_id_list_paths: Dict[str, str], |
|
) -> Dict[str, List[str]]: |
|
filter_review_id_list_valid = filter_review_id_list_paths.get("valid") |
|
filter_review_id_list_test = filter_review_id_list_paths.get("test") |
|
|
|
filter_review_id_list = {} |
|
|
|
if filter_review_id_list_valid is not None: |
|
with open(filter_review_id_list_valid, "r") as rf: |
|
filter_review_id_list["valid"] = [line.rstrip() for line in rf] |
|
|
|
if filter_review_id_list_test is not None: |
|
with open(filter_review_id_list_test, "r") as rf: |
|
filter_review_id_list["test"] = [line.rstrip() for line in rf] |
|
|
|
return filter_review_id_list |
|
|
|
|
|
def get_label_conv_review_id_list( |
|
label_conv_review_id_list_paths: Dict[str, str], |
|
) -> Dict[str, Dict[str, str]]: |
|
import csv |
|
|
|
label_conv_review_id_list_valid = label_conv_review_id_list_paths.get("valid") |
|
label_conv_review_id_list_test = label_conv_review_id_list_paths.get("test") |
|
|
|
label_conv_review_id_list: Dict[str, Dict[str, str]] = {} |
|
|
|
if label_conv_review_id_list_valid is not None: |
|
with open(label_conv_review_id_list_valid, "r", encoding="utf-8") as rf: |
|
label_conv_review_id_list["valid"] = {row[0]: row[1] for row in csv.reader(rf)} |
|
|
|
if label_conv_review_id_list_test is not None: |
|
with open(label_conv_review_id_list_test, "r", encoding="utf-8") as rf: |
|
label_conv_review_id_list["test"] = {row[0]: row[1] for row in csv.reader(rf)} |
|
|
|
return label_conv_review_id_list |
|
|
|
|
|
def output_data( |
|
df: pd.DataFrame, |
|
train_ratio: float, |
|
val_ratio: float, |
|
test_ratio: float, |
|
output_testset: bool, |
|
filter_review_id_list_paths: Dict[str, str], |
|
label_conv_review_id_list_paths: Dict[str, str], |
|
) -> Dict[str, pd.DataFrame]: |
|
instance_num = len(df) |
|
split_dfs: Dict[str, pd.DataFrame] = {} |
|
length1 = int(instance_num * train_ratio) |
|
split_dfs["train"] = df.iloc[:length1] |
|
|
|
length2 = int(instance_num * (train_ratio + val_ratio)) |
|
split_dfs["valid"] = df.iloc[length1:length2] |
|
split_dfs["test"] = df.iloc[length2:] |
|
|
|
filter_review_id_list = get_filter_review_id_list( |
|
filter_review_id_list_paths=filter_review_id_list_paths, |
|
) |
|
label_conv_review_id_list = get_label_conv_review_id_list( |
|
label_conv_review_id_list_paths=label_conv_review_id_list_paths, |
|
) |
|
|
|
for eval_type in ("valid", "test"): |
|
if filter_review_id_list.get(eval_type): |
|
df = split_dfs[eval_type] |
|
df = df[~df["review_id"].isin(filter_review_id_list[eval_type])] |
|
split_dfs[eval_type] = df |
|
|
|
for eval_type in ("valid", "test"): |
|
if label_conv_review_id_list.get(eval_type): |
|
df = split_dfs[eval_type] |
|
df = df.assign(converted_label=df["review_id"].map(label_conv_review_id_list["valid"])) |
|
df = df.assign( |
|
label=df[["label", "converted_label"]].apply( |
|
lambda xs: xs["label"] if pd.isnull(xs["converted_label"]) else xs["converted_label"], |
|
axis=1, |
|
) |
|
) |
|
df = df.drop(columns=["converted_label"]) |
|
split_dfs[eval_type] = df |
|
|
|
return { |
|
"train": split_dfs["train"], |
|
"valid": split_dfs["valid"], |
|
} |
|
|
|
|
|
def preprocess_marc_ja( |
|
config: MarcJaConfig, |
|
data_file_path: str, |
|
filter_review_id_list_paths: Dict[str, str], |
|
label_conv_review_id_list_paths: Dict[str, str], |
|
) -> Dict[str, pd.DataFrame]: |
|
try: |
|
import mojimoji |
|
|
|
def han_to_zen(text: str) -> str: |
|
return mojimoji.han_to_zen(text) |
|
|
|
except ImportError: |
|
warnings.warn( |
|
"can't import `mojimoji`, failing back to method that do nothing. " |
|
"We recommend running `pip install mojimoji` to reproduce the original preprocessing.", |
|
UserWarning, |
|
) |
|
|
|
def han_to_zen(text: str) -> str: |
|
return text |
|
|
|
try: |
|
from bs4 import BeautifulSoup |
|
|
|
def cleanup_text(text: str) -> str: |
|
return BeautifulSoup(text, "html.parser").get_text() |
|
|
|
except ImportError: |
|
warnings.warn( |
|
"can't import `beautifulsoup4`, failing back to method that do nothing." |
|
"We recommend running `pip install beautifulsoup4` to reproduce the original preprocessing.", |
|
UserWarning, |
|
) |
|
|
|
def cleanup_text(text: str) -> str: |
|
return text |
|
|
|
from tqdm import tqdm |
|
|
|
df = pd.read_csv(data_file_path, delimiter="\t") |
|
df = df[["review_body", "star_rating", "review_id"]] |
|
|
|
|
|
df = df.rename(columns={"review_body": "text", "star_rating": "rating"}) |
|
|
|
|
|
tqdm.pandas(dynamic_ncols=True, desc="Convert the rating to the label") |
|
df = df.assign(label=df["rating"].progress_apply(lambda rating: get_label(rating, config.remove_netural))) |
|
|
|
|
|
df = df[~df["label"].isnull()] |
|
|
|
|
|
tqdm.pandas(dynamic_ncols=True, desc="Remove html tags from the text") |
|
df = df.assign(text=df["text"].progress_apply(cleanup_text)) |
|
|
|
|
|
tqdm.pandas(dynamic_ncols=True, desc="Filter by ascii rate") |
|
df = df[~df["text"].progress_apply(is_filtered_by_ascii_rate)] |
|
|
|
if config.max_char_length is not None: |
|
df = df[df["text"].str.len() <= config.max_char_length] |
|
|
|
if config.is_han_to_zen: |
|
df = df.assign(text=df["text"].apply(han_to_zen)) |
|
|
|
df = df[["text", "label", "review_id"]] |
|
df = df.rename(columns={"text": "sentence"}) |
|
|
|
|
|
df = shuffle_dataframe(df) |
|
|
|
split_dfs = output_data( |
|
df=df, |
|
train_ratio=config.train_ratio, |
|
val_ratio=config.val_ratio, |
|
test_ratio=config.test_ratio, |
|
output_testset=config.output_testset, |
|
filter_review_id_list_paths=filter_review_id_list_paths, |
|
label_conv_review_id_list_paths=label_conv_review_id_list_paths, |
|
) |
|
return split_dfs |