Datasets:

Languages:
English
ArXiv:
Tags:
code
License:
gabeorlanski commited on
Commit
d176bc7
1 Parent(s): 62083ad

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -6
README.md CHANGED
@@ -20,6 +20,8 @@ size_categories:
20
 
21
  ### How To Use This Dataset
22
 
 
 
23
  To quickly evaluate BC-MBPP predictions, save the `qid` and `language` keys along with the postprocessed prediction code in a JSON lines file. Then follow the install instructions for [BabelCode](https://github.com/google-research/babelcode), and you can evaluate your predictions.
24
 
25
  ### Dataset Summary
@@ -54,19 +56,19 @@ BC-MBPP supports:
54
  >>> load_dataset("gabeorlanski/bc-mbpp")
55
  DatasetDict({
56
  train: Dataset({
57
- features: ['qid', 'title', 'language', 'text', 'signature_with_docstring', 'signature', 'arguments', 'entry_fn_name', 'entry_cls_name', 'test_code', 'solution'],
58
  num_rows: 5308
59
  })
60
  test: Dataset({
61
- features: ['qid', 'title', 'language', 'text', 'signature_with_docstring', 'signature', 'arguments', 'entry_fn_name', 'entry_cls_name', 'test_code', 'solution'],
62
  num_rows: 6989
63
  })
64
  validation: Dataset({
65
- features: ['qid', 'title', 'language', 'text', 'signature_with_docstring', 'signature', 'arguments', 'entry_fn_name', 'entry_cls_name', 'test_code', 'solution'],
66
  num_rows: 1216
67
  })
68
  prompt: Dataset({
69
- features: ['qid', 'title', 'language', 'text', 'signature_with_docstring', 'signature', 'arguments', 'entry_fn_name', 'entry_cls_name', 'test_code', 'solution'],
70
  num_rows: 160
71
  })
72
  })
@@ -83,9 +85,11 @@ DatasetDict({
83
  - `arguments`: The arguments of the problem.
84
  - `entry_fn_name`: The function's name to use an entry point.
85
  - `entry_cls_name`: The class name to use an entry point.
86
- - `test_code`: The raw testing script used in the language. If you want to use this, replace `PLACEHOLDER_FN_NAME` (and `PLACEHOLDER_CLS_NAME` if needed) with the corresponding entry points. Next, replace `PLACEHOLDER_CODE_BODY` with the postprocessed prediction.
87
  - `solution`: The solution in Python.
88
-
 
 
 
89
  ## Dataset Creation
90
  See section 2 of the [BabelCode Paper](https://arxiv.org/abs/2302.01973) to learn more about how the datasets are translated.
91
 
 
20
 
21
  ### How To Use This Dataset
22
 
23
+ First follow the install instructions for [BabelCode](https://github.com/google-research/babelcode).
24
+
25
  To quickly evaluate BC-MBPP predictions, save the `qid` and `language` keys along with the postprocessed prediction code in a JSON lines file. Then follow the install instructions for [BabelCode](https://github.com/google-research/babelcode), and you can evaluate your predictions.
26
 
27
  ### Dataset Summary
 
56
  >>> load_dataset("gabeorlanski/bc-mbpp")
57
  DatasetDict({
58
  train: Dataset({
59
+ features: ['qid', 'title', 'language', 'text', 'signature_with_docstring', 'signature', 'arguments', 'entry_fn_name', 'entry_cls_name', 'test_code', 'solution', 'test_list', 'test_case_ids'],
60
  num_rows: 5308
61
  })
62
  test: Dataset({
63
+ features: ['qid', 'title', 'language', 'text', 'signature_with_docstring', 'signature', 'arguments', 'entry_fn_name', 'entry_cls_name', 'test_code', 'solution', 'test_list', 'test_case_ids'],
64
  num_rows: 6989
65
  })
66
  validation: Dataset({
67
+ features: ['qid', 'title', 'language', 'text', 'signature_with_docstring', 'signature', 'arguments', 'entry_fn_name', 'entry_cls_name', 'test_code', 'solution', 'test_list', 'test_case_ids'],
68
  num_rows: 1216
69
  })
70
  prompt: Dataset({
71
+ features: ['qid', 'title', 'language', 'text', 'signature_with_docstring', 'signature', 'arguments', 'entry_fn_name', 'entry_cls_name', 'test_code', 'solution', 'test_list', 'test_case_ids'],
72
  num_rows: 160
73
  })
74
  })
 
85
  - `arguments`: The arguments of the problem.
86
  - `entry_fn_name`: The function's name to use an entry point.
87
  - `entry_cls_name`: The class name to use an entry point.
 
88
  - `solution`: The solution in Python.
89
+ - `test_code`: The raw testing script used in the language. If you want to use this, replace `PLACEHOLDER_FN_NAME` (and `PLACEHOLDER_CLS_NAME` if needed) with the corresponding entry points. Next, replace `PLACEHOLDER_CODE_BODY` with the postprocessed prediction.
90
+ - `test_code`: The Testing Script created by the BabelCode framework
91
+ - `test_case_ids`: The list of test case ids for the problem. These are used to determine if a prediction passes or not.
92
+ -
93
  ## Dataset Creation
94
  See section 2 of the [BabelCode Paper](https://arxiv.org/abs/2302.01973) to learn more about how the datasets are translated.
95