|
from __future__ import absolute_import, division, print_function |
|
|
|
import logging |
|
|
|
import datasets |
|
|
|
_CITATION = """ |
|
MiniNLP Data |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
MiniNLP Data |
|
""" |
|
|
|
_URLS = { |
|
"train": "train.tsv", |
|
"dev": "dev.tsv", |
|
"test": "test.tsv", |
|
} |
|
|
|
|
|
class MiniNLPConfig(datasets.BuilderConfig): |
|
def __init__(self, **kwargs): |
|
""" |
|
|
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super().__init__(**kwargs) |
|
|
|
|
|
class MiniNLP(datasets.GeneratorBasedBuilder): |
|
|
|
BUILDER_CONFIGS = [ |
|
MiniNLPConfig( |
|
name="MiniNLP", |
|
version=datasets.Version("1.0.0", ""), |
|
description="MiniNLP Dataset For Models", |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("int32"), |
|
"num": datasets.Value("int32"), |
|
"query": datasets.Value("string"), |
|
"doc": datasets.Value("string"), |
|
"label": datasets.Value("string"), |
|
"score": datasets.Value("float32"), |
|
} |
|
), |
|
|
|
|
|
supervised_keys=None, |
|
homepage="https://fuliucansheng.github.io/", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
downloaded_files = dl_manager.download_and_extract(_URLS) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": downloaded_files["train"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": downloaded_files["dev"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": downloaded_files["test"]}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""This function returns the examples in the raw (text) form.""" |
|
logging.info("generating examples from = %s", filepath) |
|
names = ["num", "query", "doc", "label", "score"] |
|
with open(filepath, encoding="utf-8") as f: |
|
for id_, line in enumerate(f): |
|
values = line.strip("\n").split("\t") |
|
row_dict = dict(zip(names, values)) |
|
yield id_, { |
|
"id": id_, |
|
"num": int(row_dict.get("num")), |
|
"query": row_dict.get("query"), |
|
"doc": row_dict.get("doc"), |
|
"label": row_dict.get("label"), |
|
"score": float(row_dict.get("score")), |
|
} |
|
|