import os | |
import pandas | |
from pathlib import Path | |
import string | |
import shutil | |
# read all the folders in data/train | |
data_folder = Path("./data/train") | |
folders = os.listdir(data_folder) | |
entries = [] | |
image_index = 0 | |
for folder in folders: | |
images_path = data_folder.joinpath(folder) | |
images = os.listdir(images_path) | |
view = 0 | |
for image in images: | |
object_description = folder.replace('_', ' ') | |
entry = {'file_name' : folder + '/' + image, 'object_type' : 'small_scenery', 'object_description' : object_description, 'view': view, 'color1' : 'none', 'color2' : 'none', 'color3' : 'none'} | |
entries.append(entry) | |
view = view + 1 | |
#put the entries into the metadata.csv | |
dataframe = pandas.DataFrame(entries) | |
# dont overwrite the old metadata.csv | |
if os.path.exists('metadata.csv'): | |
shutil.copyfile('metadata.csv', 'metadata_backup.csv') | |
# read the existing metadata.csv and add only the rows that do not exist | |
output_dataframe = pandas.read_csv('metadata.csv') | |
# drop the rows where the object description exists | |
obj_descs = output_dataframe['object_description'] | |
for obj_desc in obj_descs: | |
dataframe = dataframe.drop(dataframe[dataframe['object_description'] == obj_desc].index) | |
output_dataframe = pandas.concat([output_dataframe, dataframe]).drop_duplicates().reset_index(drop=True) | |
output_dataframe.to_csv('metadata.csv') | |
else: | |
dataframe.to_csv('metadata.csv') |