|
import subprocess |
|
import os |
|
from pathlib import Path |
|
from PIL import Image |
|
import numpy as np |
|
|
|
input_folder = Path("./original_images/") |
|
output_folder = Path("./data/train/") |
|
output_folder.mkdir(parents=True, exist_ok=True) |
|
folders = os.listdir(input_folder) |
|
for folder in folders: |
|
folder_path = input_folder.joinpath(folder) |
|
images = os.listdir(folder_path) |
|
for image in images: |
|
output = output_folder.joinpath(f'{folder}') |
|
output.mkdir(parents=True, exist_ok=True) |
|
|
|
output = output.joinpath(f'{folder}_{image}') |
|
output = str(output.absolute()) |
|
|
|
input = folder_path.joinpath(image) |
|
input = str(input.absolute()) |
|
|
|
if os.path.isfile(input) == False or '.json' in image: |
|
continue |
|
|
|
image_input = Image.open(input) |
|
|
|
background_color = (23, 35, 35, 255) |
|
new_color = (0, 0, 0, 255) |
|
data = np.array(image_input) |
|
data[(data == background_color).all(axis=-1)] = new_color |
|
image_input = Image.fromarray(data, 'RGBA') |
|
|
|
new_image = Image.new('RGB', image_input.size) |
|
new_image.paste(image_input, mask=image_input.split()[3]) |
|
|
|
bbox = new_image.getbbox() |
|
new_image = new_image.crop(bbox) |
|
new_image.save(output) |