imagenette / imagenette.py
frgfm
docs: Fixed typos in README
90acb11
raw
history blame
5.31 kB
# Copyright (C) 2022, François-Guillaume Fernandez.
# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://www.apache.org/licenses/LICENSE-2.0> for full license details.
"""Imagenette dataset."""
import os
import json
import datasets
_HOMEPAGE = "https://github.com/fastai/imagenette"
_LICENSE = "Apache License 2.0"
_CITATION = """\
@software{Howard_Imagenette_2019,
title={Imagenette: A smaller subset of 10 easily classified classes from Imagenet},
author={Jeremy Howard},
year={2019},
month={March},
publisher = {GitHub},
url = {https://github.com/fastai/imagenette}
}
"""
_DESCRIPTION = """\
Imagenette is a subset of 10 easily classified classes from Imagenet
(tench, English springer, cassette player, chain saw, church, French
horn, garbage truck, gas pump, golf ball, parachute).
"""
_LABEL_MAP = [
'n01440764',
'n02102040',
'n02979186',
'n03000684',
'n03028079',
'n03394916',
'n03417042',
'n03425413',
'n03445777',
'n03888257',
]
_REPO = "https://huggingface.co/datasets/frgfm/imagenette/resolve/main/metadata"
class ImagenetteConfig(datasets.BuilderConfig):
"""BuilderConfig for Imagette."""
def __init__(self, data_url, metadata_urls, **kwargs):
"""BuilderConfig for Imagette.
Args:
data_url: `string`, url to download the zip file from.
matadata_urls: dictionary with keys 'train' and 'validation' containing the archive metadata URLs
**kwargs: keyword arguments forwarded to super.
"""
super(ImagenetteConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
self.data_url = data_url
self.metadata_urls = metadata_urls
class Imagenette(datasets.GeneratorBasedBuilder):
"""Imagenette dataset."""
BUILDER_CONFIGS = [
ImagenetteConfig(
name="full_size",
description="All images are in their original size.",
data_url="https://s3.amazonaws.com/fast-ai-imageclas/imagenette2.tgz",
metadata_urls={
"train": f"{_REPO}/imagenette2/train.txt",
"validation": f"{_REPO}/imagenette2/val.txt",
},
),
ImagenetteConfig(
name="320px",
description="All images were resized on their shortest side to 320 pixels.",
data_url="https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-320.tgz",
metadata_urls={
"train": f"{_REPO}/imagenette2-320/train.txt",
"validation": f"{_REPO}/imagenette2-320/val.txt",
},
),
ImagenetteConfig(
name="160px",
description="All images were resized on their shortest side to 160 pixels.",
data_url="https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-160.tgz",
metadata_urls={
"train": f"{_REPO}/imagenette2-160/train.txt",
"validation": f"{_REPO}/imagenette2-160/val.txt",
},
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION + self.config.description,
features=datasets.Features(
{
"image": datasets.Image(),
"label": datasets.ClassLabel(
names=[
"tench",
"English springer",
"cassette player",
"chain saw",
"church",
"French horn",
"garbage truck",
"gas pump",
"golf ball",
"parachute",
]
),
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
archive_path = dl_manager.download(self.config.data_url)
metadata_paths = dl_manager.download(self.config.metadata_urls)
archive_iter = dl_manager.iter_archive(archive_path)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"images": archive_iter,
"metadata_path": metadata_paths["train"],
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"images": archive_iter,
"metadata_path": metadata_paths["validation"],
},
),
]
def _generate_examples(self, images, metadata_path):
with open(metadata_path, encoding="utf-8") as f:
files_to_keep = set(f.read().split("\n"))
idx = 0
for file_path, file_obj in images:
if file_path in files_to_keep:
label = _LABEL_MAP.index(file_path.split("/")[-2])
yield idx, {
"image": {"path": file_path, "bytes": file_obj.read()},
"label": label,
}
idx += 1