frascuchon HF staff commited on
Commit
6939558
1 Parent(s): a32569b

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +290 -130
README.md CHANGED
@@ -1,133 +1,293 @@
1
  ---
2
- dataset_info:
3
- features:
4
- - name: title
5
- dtype: string
6
- id: field
7
- - name: question
8
- dtype: string
9
- id: field
10
- - name: answer
11
- dtype: string
12
- id: field
13
- - name: title_question_fit
14
- list:
15
- - name: user_id
16
- dtype: string
17
- id: question
18
- - name: value
19
- dtype: string
20
- id: suggestion
21
- - name: status
22
- dtype: string
23
- id: question
24
- - name: title_question_fit-suggestion
25
- dtype: string
26
- id: suggestion
27
- - name: title_question_fit-suggestion-metadata
28
- struct:
29
- - name: type
30
- dtype: string
31
- id: suggestion-metadata
32
- - name: score
33
- dtype: float32
34
- id: suggestion-metadata
35
- - name: agent
36
- dtype: string
37
- id: suggestion-metadata
38
- - name: tags
39
- list:
40
- - name: user_id
41
- dtype: string
42
- id: question
43
- - name: value
44
- sequence: string
45
- id: suggestion
46
- - name: status
47
- dtype: string
48
- id: question
49
- - name: tags-suggestion
50
- sequence: string
51
- id: suggestion
52
- - name: tags-suggestion-metadata
53
- struct:
54
- - name: type
55
- dtype: string
56
- id: suggestion-metadata
57
- - name: score
58
- dtype: float32
59
- id: suggestion-metadata
60
- - name: agent
61
- dtype: string
62
- id: suggestion-metadata
63
- - name: answer_quality
64
- list:
65
- - name: user_id
66
- dtype: string
67
- id: question
68
- - name: value
69
- dtype: int32
70
- id: suggestion
71
- - name: status
72
- dtype: string
73
- id: question
74
- - name: answer_quality-suggestion
75
- dtype: int32
76
- id: suggestion
77
- - name: answer_quality-suggestion-metadata
78
- struct:
79
- - name: type
80
- dtype: string
81
- id: suggestion-metadata
82
- - name: score
83
- dtype: float32
84
- id: suggestion-metadata
85
- - name: agent
86
- dtype: string
87
- id: suggestion-metadata
88
- - name: new_answer
89
- list:
90
- - name: user_id
91
- dtype: string
92
- id: question
93
- - name: value
94
- dtype: string
95
- id: suggestion
96
- - name: status
97
- dtype: string
98
- id: question
99
- - name: new_answer-suggestion
100
- dtype: string
101
- id: suggestion
102
- - name: new_answer-suggestion-metadata
103
- struct:
104
- - name: type
105
- dtype: string
106
- id: suggestion-metadata
107
- - name: score
108
- dtype: float32
109
- id: suggestion-metadata
110
- - name: agent
111
- dtype: string
112
- id: suggestion-metadata
113
- - name: external_id
114
- dtype: string
115
- id: external_id
116
- - name: metadata
117
- dtype: string
118
- id: metadata
119
- splits:
120
- - name: train
121
- num_bytes: 351704
122
- num_examples: 200
123
- download_size: 208405
124
- dataset_size: 351704
125
- configs:
126
- - config_name: default
127
- data_files:
128
- - split: train
129
- path: data/train-*
130
  ---
131
- # Dataset Card for "stackoverflow_feedback_demo"
132
 
133
- [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ size_categories: n<1K
3
+ tags:
4
+ - rlfh
5
+ - argilla
6
+ - human-feedback
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  ---
 
8
 
9
+ # Dataset Card for stackoverflow_feedback_demo
10
+
11
+ This dataset has been created with [Argilla](https://docs.argilla.io).
12
+
13
+ As shown in the sections below, this dataset can be loaded into Argilla as explained in [Load with Argilla](#load-with-argilla), or used directly with the `datasets` library in [Load with `datasets`](#load-with-datasets).
14
+
15
+ ## Dataset Description
16
+
17
+ - **Homepage:** https://argilla.io
18
+ - **Repository:** https://github.com/argilla-io/argilla
19
+ - **Paper:**
20
+ - **Leaderboard:**
21
+ - **Point of Contact:**
22
+
23
+ ### Dataset Summary
24
+
25
+ This dataset contains:
26
+
27
+ * A dataset configuration file conforming to the Argilla dataset format named `argilla.yaml`. This configuration file will be used to configure the dataset when using the `FeedbackDataset.from_huggingface` method in Argilla.
28
+
29
+ * Dataset records in a format compatible with HuggingFace `datasets`. These records will be loaded automatically when using `FeedbackDataset.from_huggingface` and can be loaded independently using the `datasets` library via `load_dataset`.
30
+
31
+ * The [annotation guidelines](#annotation-guidelines) that have been used for building and curating the dataset, if they've been defined in Argilla.
32
+
33
+ ### Load with Argilla
34
+
35
+ To load with Argilla, you'll just need to install Argilla as `pip install argilla --upgrade` and then use the following code:
36
+
37
+ ```python
38
+ import argilla as rg
39
+
40
+ ds = rg.FeedbackDataset.from_huggingface("frascuchon/stackoverflow_feedback_demo")
41
+ ```
42
+
43
+ ### Load with `datasets`
44
+
45
+ To load this dataset with `datasets`, you'll just need to install `datasets` as `pip install datasets --upgrade` and then use the following code:
46
+
47
+ ```python
48
+ from datasets import load_dataset
49
+
50
+ ds = load_dataset("frascuchon/stackoverflow_feedback_demo")
51
+ ```
52
+
53
+ ### Supported Tasks and Leaderboards
54
+
55
+ This dataset can contain [multiple fields, questions and responses](https://docs.argilla.io/en/latest/conceptual_guides/data_model.html#feedback-dataset) so it can be used for different NLP tasks, depending on the configuration. The dataset structure is described in the [Dataset Structure section](#dataset-structure).
56
+
57
+ There are no leaderboards associated with this dataset.
58
+
59
+ ### Languages
60
+
61
+ [More Information Needed]
62
+
63
+ ## Dataset Structure
64
+
65
+ ### Data in Argilla
66
+
67
+ The dataset is created in Argilla with: **fields**, **questions**, **suggestions**, and **guidelines**.
68
+
69
+ The **fields** are the dataset records themselves, for the moment just text fields are suppported. These are the ones that will be used to provide responses to the questions.
70
+
71
+ | Field Name | Title | Type | Required | Markdown |
72
+ | ---------- | ----- | ---- | -------- | -------- |
73
+ | title | Title | FieldTypes.text | True | False |
74
+ | question | Question | FieldTypes.text | True | True |
75
+ | answer | Answer | FieldTypes.text | True | True |
76
+
77
+
78
+ The **questions** are the questions that will be asked to the annotators. They can be of different types, such as rating, text, label_selection, multi_label_selection, or ranking.
79
+
80
+ | Question Name | Title | Type | Required | Description | Values/Labels |
81
+ | ------------- | ----- | ---- | -------- | ----------- | ------------- |
82
+ | title_question_fit | Does the title match the question? | QuestionTypes.label_selection | True | N/A | ['yes', 'no'] |
83
+ | tags | What are the topics mentioned in this question? | QuestionTypes.multi_label_selection | True | Select all that apply. | ['python', 'django', 'python-2.7', 'list', 'python-3.x', 'numpy', 'pandas', 'regex', 'dictionary', 'string', 'matplotlib', 'arrays', 'google-app-engine', 'csv', 'tkinter', 'flask', 'json', 'linux', 'mysql', 'html', 'function', 'file', 'class', 'algorithm', 'windows', 'scipy', 'loops', 'multithreading', 'beautifulsoup', 'django-models', 'for-loop', 'javascript', 'xml', 'sqlalchemy', 'parsing', 'performance', 'datetime', 'osx', 'sorting', 'unicode', 'c++', 'dataframe', 'selenium', 'subprocess', 'pygame', 'java', 'pyqt', 'pip', 'tuples', 'scrapy'] |
84
+ | answer_quality | Rate the quality of the answer: | QuestionTypes.rating | True | N/A | [1, 2, 3, 4, 5] |
85
+ | new_answer | If needed, correct the answer | QuestionTypes.text | False | If the rating is below 4, please provide a corrected answer | N/A |
86
+
87
+
88
+ **✨ NEW** Additionally, we also have **suggestions**, which are linked to the existing questions, and so on, named appending "-suggestion" and "-suggestion-metadata" to those, containing the value/s of the suggestion and its metadata, respectively. So on, the possible values are the same as in the table above.
89
+
90
+ Finally, the **guidelines** are just a plain string that can be used to provide instructions to the annotators. Find those in the [annotation guidelines](#annotation-guidelines) section.
91
+
92
+ ### Data Instances
93
+
94
+ An example of a dataset instance in Argilla looks as follows:
95
+
96
+ ```json
97
+ {
98
+ "external_id": null,
99
+ "fields": {
100
+ "answer": "\u003cp\u003eUnfortunately the only API that isn\u0027t deprecated is located in the ApplicationServices framework, which doesn\u0027t have a bridge support file, and thus isn\u0027t available in the bridge. If you\u0027re wanting to use ctypes, you can use ATSFontGetFileReference after looking up the ATSFontRef.\u003c/p\u003e\r\n\r\n\u003cp\u003eCocoa doesn\u0027t have any native support, at least as of 10.5, for getting the location of a font.\u003c/p\u003e",
101
+ "question": "\u003cp\u003eI am using the Photoshop\u0027s javascript API to find the fonts in a given PSD.\u003c/p\u003e\n\n\u003cp\u003eGiven a font name returned by the API, I want to find the actual physical font file that that font name corresponds to on the disc.\u003c/p\u003e\n\n\u003cp\u003eThis is all happening in a python program running on OSX so I guess I\u0027m looking for one of:\u003c/p\u003e\n\n\u003cul\u003e\n\u003cli\u003eSome Photoshop javascript\u003c/li\u003e\n\u003cli\u003eA Python function\u003c/li\u003e\n\u003cli\u003eAn OSX API that I can call from python\u003c/li\u003e\n\u003c/ul\u003e\n",
102
+ "title": "How can I find the full path to a font from its display name on a Mac?"
103
+ },
104
+ "metadata": {},
105
+ "responses": [
106
+ {
107
+ "status": "submitted",
108
+ "user_id": null,
109
+ "values": {
110
+ "answer_quality": {
111
+ "value": 1
112
+ },
113
+ "new_answer": {
114
+ "value": "Sample answer"
115
+ },
116
+ "tags": {
117
+ "value": [
118
+ "tkinter"
119
+ ]
120
+ },
121
+ "title_question_fit": {
122
+ "value": "yes"
123
+ }
124
+ }
125
+ }
126
+ ],
127
+ "suggestions": []
128
+ }
129
+ ```
130
+
131
+ While the same record in HuggingFace `datasets` looks as follows:
132
+
133
+ ```json
134
+ {
135
+ "answer": "\u003cp\u003eUnfortunately the only API that isn\u0027t deprecated is located in the ApplicationServices framework, which doesn\u0027t have a bridge support file, and thus isn\u0027t available in the bridge. If you\u0027re wanting to use ctypes, you can use ATSFontGetFileReference after looking up the ATSFontRef.\u003c/p\u003e\r\n\r\n\u003cp\u003eCocoa doesn\u0027t have any native support, at least as of 10.5, for getting the location of a font.\u003c/p\u003e",
136
+ "answer_quality": [
137
+ {
138
+ "status": "submitted",
139
+ "user_id": null,
140
+ "value": 1
141
+ }
142
+ ],
143
+ "answer_quality-suggestion": null,
144
+ "answer_quality-suggestion-metadata": {
145
+ "agent": null,
146
+ "score": null,
147
+ "type": null
148
+ },
149
+ "external_id": null,
150
+ "metadata": "{}",
151
+ "new_answer": [
152
+ {
153
+ "status": "submitted",
154
+ "user_id": null,
155
+ "value": "Sample answer"
156
+ }
157
+ ],
158
+ "new_answer-suggestion": null,
159
+ "new_answer-suggestion-metadata": {
160
+ "agent": null,
161
+ "score": null,
162
+ "type": null
163
+ },
164
+ "question": "\u003cp\u003eI am using the Photoshop\u0027s javascript API to find the fonts in a given PSD.\u003c/p\u003e\n\n\u003cp\u003eGiven a font name returned by the API, I want to find the actual physical font file that that font name corresponds to on the disc.\u003c/p\u003e\n\n\u003cp\u003eThis is all happening in a python program running on OSX so I guess I\u0027m looking for one of:\u003c/p\u003e\n\n\u003cul\u003e\n\u003cli\u003eSome Photoshop javascript\u003c/li\u003e\n\u003cli\u003eA Python function\u003c/li\u003e\n\u003cli\u003eAn OSX API that I can call from python\u003c/li\u003e\n\u003c/ul\u003e\n",
165
+ "tags": [
166
+ {
167
+ "status": "submitted",
168
+ "user_id": null,
169
+ "value": [
170
+ "tkinter"
171
+ ]
172
+ }
173
+ ],
174
+ "tags-suggestion": null,
175
+ "tags-suggestion-metadata": {
176
+ "agent": null,
177
+ "score": null,
178
+ "type": null
179
+ },
180
+ "title": "How can I find the full path to a font from its display name on a Mac?",
181
+ "title_question_fit": [
182
+ {
183
+ "status": "submitted",
184
+ "user_id": null,
185
+ "value": "yes"
186
+ }
187
+ ],
188
+ "title_question_fit-suggestion": null,
189
+ "title_question_fit-suggestion-metadata": {
190
+ "agent": null,
191
+ "score": null,
192
+ "type": null
193
+ }
194
+ }
195
+ ```
196
+
197
+ ### Data Fields
198
+
199
+ Among the dataset fields, we differentiate between the following:
200
+
201
+ * **Fields:** These are the dataset records themselves, for the moment just text fields are suppported. These are the ones that will be used to provide responses to the questions.
202
+
203
+ * **title** is of type `FieldTypes.text`.
204
+ * **question** is of type `FieldTypes.text`.
205
+ * **answer** is of type `FieldTypes.text`.
206
+
207
+ * **Questions:** These are the questions that will be asked to the annotators. They can be of different types, such as `RatingQuestion`, `TextQuestion`, `LabelQuestion`, `MultiLabelQuestion`, and `RankingQuestion`.
208
+
209
+ * **title_question_fit** is of type `QuestionTypes.label_selection` with the following allowed values ['yes', 'no'].
210
+ * **tags** is of type `QuestionTypes.multi_label_selection` with the following allowed values ['python', 'django', 'python-2.7', 'list', 'python-3.x', 'numpy', 'pandas', 'regex', 'dictionary', 'string', 'matplotlib', 'arrays', 'google-app-engine', 'csv', 'tkinter', 'flask', 'json', 'linux', 'mysql', 'html', 'function', 'file', 'class', 'algorithm', 'windows', 'scipy', 'loops', 'multithreading', 'beautifulsoup', 'django-models', 'for-loop', 'javascript', 'xml', 'sqlalchemy', 'parsing', 'performance', 'datetime', 'osx', 'sorting', 'unicode', 'c++', 'dataframe', 'selenium', 'subprocess', 'pygame', 'java', 'pyqt', 'pip', 'tuples', 'scrapy'], and description "Select all that apply.".
211
+ * **answer_quality** is of type `QuestionTypes.rating` with the following allowed values [1, 2, 3, 4, 5].
212
+ * (optional) **new_answer** is of type `QuestionTypes.text`, and description "If the rating is below 4, please provide a corrected answer".
213
+
214
+ * **✨ NEW** **Suggestions:** As of Argilla 1.13.0, the suggestions have been included to provide the annotators with suggestions to ease or assist during the annotation process. Suggestions are linked to the existing questions, are always optional, and contain not just the suggestion itself, but also the metadata linked to it, if applicable.
215
+
216
+ * (optional) **title_question_fit-suggestion** is of type `QuestionTypes.label_selection` with the following allowed values ['yes', 'no'].
217
+ * (optional) **tags-suggestion** is of type `QuestionTypes.multi_label_selection` with the following allowed values ['python', 'django', 'python-2.7', 'list', 'python-3.x', 'numpy', 'pandas', 'regex', 'dictionary', 'string', 'matplotlib', 'arrays', 'google-app-engine', 'csv', 'tkinter', 'flask', 'json', 'linux', 'mysql', 'html', 'function', 'file', 'class', 'algorithm', 'windows', 'scipy', 'loops', 'multithreading', 'beautifulsoup', 'django-models', 'for-loop', 'javascript', 'xml', 'sqlalchemy', 'parsing', 'performance', 'datetime', 'osx', 'sorting', 'unicode', 'c++', 'dataframe', 'selenium', 'subprocess', 'pygame', 'java', 'pyqt', 'pip', 'tuples', 'scrapy'].
218
+ * (optional) **answer_quality-suggestion** is of type `QuestionTypes.rating` with the following allowed values [1, 2, 3, 4, 5].
219
+ * (optional) **new_answer-suggestion** is of type `QuestionTypes.text`.
220
+
221
+ Additionally, we also have one more field which is optional and is the following:
222
+
223
+ * **external_id:** This is an optional field that can be used to provide an external ID for the dataset record. This can be useful if you want to link the dataset record to an external resource, such as a database or a file.
224
+
225
+ ### Data Splits
226
+
227
+ The dataset contains a single split, which is `train`.
228
+
229
+ ## Dataset Creation
230
+
231
+ ### Curation Rationale
232
+
233
+ [More Information Needed]
234
+
235
+ ### Source Data
236
+
237
+ #### Initial Data Collection and Normalization
238
+
239
+ [More Information Needed]
240
+
241
+ #### Who are the source language producers?
242
+
243
+ [More Information Needed]
244
+
245
+ ### Annotations
246
+
247
+ #### Annotation guidelines
248
+
249
+ [More Information Needed]
250
+
251
+ #### Annotation process
252
+
253
+ [More Information Needed]
254
+
255
+ #### Who are the annotators?
256
+
257
+ [More Information Needed]
258
+
259
+ ### Personal and Sensitive Information
260
+
261
+ [More Information Needed]
262
+
263
+ ## Considerations for Using the Data
264
+
265
+ ### Social Impact of Dataset
266
+
267
+ [More Information Needed]
268
+
269
+ ### Discussion of Biases
270
+
271
+ [More Information Needed]
272
+
273
+ ### Other Known Limitations
274
+
275
+ [More Information Needed]
276
+
277
+ ## Additional Information
278
+
279
+ ### Dataset Curators
280
+
281
+ [More Information Needed]
282
+
283
+ ### Licensing Information
284
+
285
+ [More Information Needed]
286
+
287
+ ### Citation Information
288
+
289
+ [More Information Needed]
290
+
291
+ ### Contributions
292
+
293
+ [More Information Needed]