Delete download.py
Browse files- download.py +0 -153
download.py
DELETED
@@ -1,153 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
from shapely.geometry import shape
|
3 |
-
import os
|
4 |
-
import collections
|
5 |
-
from tqdm import tqdm
|
6 |
-
import pandas as pd
|
7 |
-
from multiprocessing import cpu_count
|
8 |
-
from multiprocessing.pool import ThreadPool
|
9 |
-
import requests
|
10 |
-
import networkx as nx
|
11 |
-
import rasterio as rio
|
12 |
-
from extract import extract
|
13 |
-
from tiling import get_tiles
|
14 |
-
|
15 |
-
from huggingface_hub import HfApi
|
16 |
-
from datetime import datetime
|
17 |
-
from tiling import get_tiles
|
18 |
-
|
19 |
-
def download_image(args):
|
20 |
-
url, fn = args['image_href'], args['image']
|
21 |
-
|
22 |
-
if os.path.exists(fn) is False:
|
23 |
-
try:
|
24 |
-
r = requests.get(url)
|
25 |
-
with open(fn, 'wb') as f:
|
26 |
-
f.write(r.content)
|
27 |
-
except Exception as e:
|
28 |
-
print('Exception in download_url():', e)
|
29 |
-
return url
|
30 |
-
|
31 |
-
with rio.open(fn, "r") as ds:
|
32 |
-
print(args['date'], args['id'], ds.crs.to_proj4())
|
33 |
-
|
34 |
-
return url
|
35 |
-
|
36 |
-
|
37 |
-
if __name__ == '__main__':
|
38 |
-
api = HfApi()
|
39 |
-
|
40 |
-
image_dir = './dataset/image'
|
41 |
-
|
42 |
-
if os.path.exists('data.json') == False:
|
43 |
-
extract('data.json')
|
44 |
-
|
45 |
-
with open('data.json') as f:
|
46 |
-
data = json.load(f)
|
47 |
-
|
48 |
-
|
49 |
-
ids = [f['id'] for f in data['features']]
|
50 |
-
duplicated = [item for item, count in collections.Counter(ids).items() if count > 1]
|
51 |
-
for duplicated_instance in duplicated:
|
52 |
-
items = []
|
53 |
-
for f in data['features']:
|
54 |
-
if f['id'] == duplicated_instance:
|
55 |
-
items.append(json.dumps(f))
|
56 |
-
assert len(collections.Counter(items).keys()) == 1, 'Unexpected duplicated item' # Tutti gli elementi che hanno lo stesso id sono completamente identici
|
57 |
-
|
58 |
-
# Prendo tutte le feature che sono univoce a livello di contenuto
|
59 |
-
data['features'] =[json.loads(f) for f in list(set([json.dumps(f) for f in data['features']]))]
|
60 |
-
#data['features'] = data['features'][:2]
|
61 |
-
|
62 |
-
records = []
|
63 |
-
for idx in tqdm(range(len(data['features']))):
|
64 |
-
feature = data['features'][idx]
|
65 |
-
|
66 |
-
gec = feature['assets'].get('GEC')
|
67 |
-
if gec is None:
|
68 |
-
continue
|
69 |
-
|
70 |
-
|
71 |
-
metadata = feature['assets']['metadata']['content']
|
72 |
-
assert len(metadata['collects']) == 1, 'Unexpected situation'
|
73 |
-
assert len(metadata['derivedProducts']['GEC']) == 1, 'Unexpected situation'
|
74 |
-
|
75 |
-
parsed_date = datetime.fromisoformat(metadata['collects'][0]['startAtUTC'])
|
76 |
-
if parsed_date.year < 2024:
|
77 |
-
continue
|
78 |
-
|
79 |
-
|
80 |
-
records.append({
|
81 |
-
'id': feature['id'],
|
82 |
-
'date': metadata['collects'][0]['startAtUTC'],
|
83 |
-
'bbox': feature['bbox'],
|
84 |
-
'geometry': feature['geometry'],
|
85 |
-
'satellite': metadata['umbraSatelliteName'],
|
86 |
-
'track': metadata['collects'][0]['satelliteTrack'],
|
87 |
-
'direction': metadata['collects'][0]['observationDirection'],
|
88 |
-
'mode': metadata['imagingMode'],
|
89 |
-
'band': metadata['collects'][0]['radarBand'],
|
90 |
-
'polarization': metadata['collects'][0]['polarizations'],
|
91 |
-
'azimuth_res': metadata['derivedProducts']['GEC'][0]['groundResolution']['azimuthMeters'],
|
92 |
-
'range_res': metadata['derivedProducts']['GEC'][0]['groundResolution']['rangeMeters'],
|
93 |
-
'rows': metadata['derivedProducts']['GEC'][0]['numRows'],
|
94 |
-
'cols': metadata['derivedProducts']['GEC'][0]['numColumns'],
|
95 |
-
'size': metadata['derivedProducts']['GEC'][0]['numRows']*metadata['derivedProducts']['GEC'][0]['numColumns'],
|
96 |
-
'image_href': gec['href'],
|
97 |
-
'image': os.path.join(image_dir, '{name}.tiff'.format(name=feature['id']))
|
98 |
-
})
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
cpus = cpu_count()
|
103 |
-
results = ThreadPool(cpus - 1).imap_unordered(download_image, records)
|
104 |
-
for result in results:
|
105 |
-
print('url:', result)
|
106 |
-
|
107 |
-
for record in records:
|
108 |
-
try:
|
109 |
-
with rio.open(record['image']) as src:
|
110 |
-
image_crs = src.crs.to_proj4()
|
111 |
-
record['crs'] = src.crs.to_proj4()
|
112 |
-
except:
|
113 |
-
record['crs'] = 'None'
|
114 |
-
print('Error reading the image')
|
115 |
-
|
116 |
-
df = pd.DataFrame.from_records(records)
|
117 |
-
df.to_excel('out.xlsx')
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
selected_records = []
|
122 |
-
for record in records:
|
123 |
-
if record['crs'] == '+proj=longlat +datum=WGS84 +no_defs=True':
|
124 |
-
out_dir = 'dataset/tile/{id}'.format(id = record['id'])
|
125 |
-
if os.path.exists(out_dir) is False:
|
126 |
-
os.mkdir(out_dir)
|
127 |
-
selected_records.append({'input_path': record['image'], 'out_dir': out_dir, 'patch_size': 2048})
|
128 |
-
cpus = cpu_count()
|
129 |
-
results = ThreadPool(cpus - 1).imap_unordered(get_tiles, selected_records)
|
130 |
-
for result in results:
|
131 |
-
print('url:', result)
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
api.upload_file(
|
136 |
-
path_or_fileobj='out.xlsx',
|
137 |
-
path_in_repo='out.xlsx',
|
138 |
-
repo_id='fedric95/umbra',
|
139 |
-
repo_type='dataset',
|
140 |
-
)
|
141 |
-
|
142 |
-
api.upload_file(
|
143 |
-
path_or_fileobj='data.json',
|
144 |
-
path_in_repo='data.json',
|
145 |
-
repo_id='fedric95/umbra',
|
146 |
-
repo_type='dataset',
|
147 |
-
)
|
148 |
-
|
149 |
-
api.upload_large_folder(
|
150 |
-
repo_id='fedric95/umbra',
|
151 |
-
repo_type='dataset',
|
152 |
-
folder_path='./dataset/',
|
153 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|