|
|
import os |
|
|
|
|
|
import numpy as np |
|
|
import pandas as pd |
|
|
import SimpleITK as sitk |
|
|
|
|
|
from skimage.measure import label, regionprops |
|
|
|
|
|
from glob import glob |
|
|
from tqdm import tqdm |
|
|
|
|
|
|
|
|
masks = sorted(glob('luna25_ts_seg/*.nii.gz')) |
|
|
|
|
|
record = [] |
|
|
for mask_file in tqdm(masks): |
|
|
|
|
|
mask_itk = sitk.ReadImage(mask_file) |
|
|
mask_arr = sitk.GetArrayFromImage(mask_itk) |
|
|
|
|
|
unit_volume = np.prod(mask_itk.GetSpacing()) |
|
|
|
|
|
binary_mask = (mask_arr == 2).astype(int) |
|
|
|
|
|
labeled_mask = label(binary_mask, connectivity=3) |
|
|
properties = regionprops(labeled_mask) |
|
|
|
|
|
for prop in properties: |
|
|
|
|
|
|
|
|
record.append({ |
|
|
'mask_file': os.path.basename(mask_file), |
|
|
'centroid': np.round(prop.centroid, 3), |
|
|
'volume_px': int(prop.area), |
|
|
'volume_mm3': np.round(prop.area * unit_volume, 3), |
|
|
'bbox': np.array(prop.bbox), |
|
|
|
|
|
|
|
|
}) |
|
|
|
|
|
record_df = pd.DataFrame(record) |
|
|
record_df.to_csv('metadata.csv', index=False) |
|
|
|
|
|
|
|
|
|