Fixing mask archive path
Browse filesSigned-off-by: Jiri Podivin <jpodivin@gmail.com>
- metadata_semantic_test.csv +2 -2
- metadata_semantic_train.csv +2 -2
- plantorgans.py +5 -14
metadata_semantic_test.csv
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e142e80f70774bb055767f4484704f89dd7edf2dfc0db456ef4625cfe1949cf5
|
3 |
+
size 148063
|
metadata_semantic_train.csv
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb2a941de28584d065e441b56bbc25aaa2870e66cf3d2c506c7d2c2b4a1a3250
|
3 |
+
size 591787
|
plantorgans.py
CHANGED
@@ -16,7 +16,7 @@ _BASE_URL = "https://huggingface.co/datasets/jpodivin/plantorgans/resolve/main/"
|
|
16 |
_TRAIN_URLS = [_BASE_URL + f"sourcedata_labeled.tar.{i:02}" for i in range(0, 8)]
|
17 |
_TEST_URLS = [_BASE_URL + f"sourcedata_labeled.tar.{i:02}" for i in range(8, 12)]
|
18 |
_MASKS_URLS = [_BASE_URL + f"masks.tar.0{i}" for i in range(0, 2)]
|
19 |
-
_SEMANTIC_MASKS_URLS =
|
20 |
|
21 |
_SEMANTIC_METADATA_URLS = {
|
22 |
'train': 'https://huggingface.co/datasets/jpodivin/plantorgans/resolve/main/metadata_semantic_train.csv',
|
@@ -28,6 +28,7 @@ _PANOPTIC_METADATA_URLS = {
|
|
28 |
'test': 'https://huggingface.co/datasets/jpodivin/plantorgans/resolve/main/metadata_test.csv'
|
29 |
}
|
30 |
|
|
|
31 |
class PlantOrgansConfig(datasets.BuilderConfig):
|
32 |
"""Builder Config for PlantOrgans"""
|
33 |
|
@@ -70,14 +71,7 @@ class PlantOrgans(datasets.GeneratorBasedBuilder):
|
|
70 |
"image": datasets.Image(),
|
71 |
"mask": datasets.Image(),
|
72 |
"image_name": datasets.Value(dtype="string"),
|
73 |
-
"class": datasets.ClassLabel(
|
74 |
-
names=['Fruit', 'Leaf', 'Flower', 'Stem']),
|
75 |
})
|
76 |
-
if self.config.name == 'instance_segmentation_full':
|
77 |
-
features['score'] = datasets.Value(dtype="double")
|
78 |
-
else:
|
79 |
-
features['class'] = datasets.ClassLabel(
|
80 |
-
names=['Fruit', 'Leaf', 'Flower', 'Stem'])
|
81 |
return datasets.DatasetInfo(
|
82 |
description=_DESCRIPTION,
|
83 |
features=features,
|
@@ -104,7 +98,7 @@ class PlantOrgans(datasets.GeneratorBasedBuilder):
|
|
104 |
if self.config.name == 'instance_segmentation_full':
|
105 |
metadata_urls = _PANOPTIC_METADATA_URLS
|
106 |
mask_urls = _MASKS_URLS
|
107 |
-
mask_glob = '/
|
108 |
else:
|
109 |
metadata_urls = _SEMANTIC_METADATA_URLS
|
110 |
mask_urls = _SEMANTIC_MASKS_URLS
|
@@ -155,6 +149,8 @@ class PlantOrgans(datasets.GeneratorBasedBuilder):
|
|
155 |
|
156 |
# Get all common about images and masks from csv
|
157 |
metadata = pd.read_csv(metadata_path)
|
|
|
|
|
158 |
|
159 |
# Merge dataframes
|
160 |
metadata = metadata.merge(masks_paths, on='mask', how='inner')
|
@@ -168,10 +164,5 @@ class PlantOrgans(datasets.GeneratorBasedBuilder):
|
|
168 |
'mask': r['mask_path'],
|
169 |
'image': r['image_path'],
|
170 |
'image_name': Path(r['image_path']).parts[-1],
|
171 |
-
'class': r['class']
|
172 |
}
|
173 |
-
if self.config.name == 'instance_segmentation_full':
|
174 |
-
example['score'] = r['score']
|
175 |
-
else:
|
176 |
-
example['class'] = r['class']
|
177 |
yield i, example
|
|
|
16 |
_TRAIN_URLS = [_BASE_URL + f"sourcedata_labeled.tar.{i:02}" for i in range(0, 8)]
|
17 |
_TEST_URLS = [_BASE_URL + f"sourcedata_labeled.tar.{i:02}" for i in range(8, 12)]
|
18 |
_MASKS_URLS = [_BASE_URL + f"masks.tar.0{i}" for i in range(0, 2)]
|
19 |
+
_SEMANTIC_MASKS_URLS = "semantic_masks.tar.gz"
|
20 |
|
21 |
_SEMANTIC_METADATA_URLS = {
|
22 |
'train': 'https://huggingface.co/datasets/jpodivin/plantorgans/resolve/main/metadata_semantic_train.csv',
|
|
|
28 |
'test': 'https://huggingface.co/datasets/jpodivin/plantorgans/resolve/main/metadata_test.csv'
|
29 |
}
|
30 |
|
31 |
+
|
32 |
class PlantOrgansConfig(datasets.BuilderConfig):
|
33 |
"""Builder Config for PlantOrgans"""
|
34 |
|
|
|
71 |
"image": datasets.Image(),
|
72 |
"mask": datasets.Image(),
|
73 |
"image_name": datasets.Value(dtype="string"),
|
|
|
|
|
74 |
})
|
|
|
|
|
|
|
|
|
|
|
75 |
return datasets.DatasetInfo(
|
76 |
description=_DESCRIPTION,
|
77 |
features=features,
|
|
|
98 |
if self.config.name == 'instance_segmentation_full':
|
99 |
metadata_urls = _PANOPTIC_METADATA_URLS
|
100 |
mask_urls = _MASKS_URLS
|
101 |
+
mask_glob = '/masks/**.png'
|
102 |
else:
|
103 |
metadata_urls = _SEMANTIC_METADATA_URLS
|
104 |
mask_urls = _SEMANTIC_MASKS_URLS
|
|
|
149 |
|
150 |
# Get all common about images and masks from csv
|
151 |
metadata = pd.read_csv(metadata_path)
|
152 |
+
metadata['image'] = metadata['image_path'].apply(lambda x: str(Path(x).parts[-1]))
|
153 |
+
metadata['mask'] = metadata['mask_path'].apply(lambda x: str(Path(x).parts[-1]))
|
154 |
|
155 |
# Merge dataframes
|
156 |
metadata = metadata.merge(masks_paths, on='mask', how='inner')
|
|
|
164 |
'mask': r['mask_path'],
|
165 |
'image': r['image_path'],
|
166 |
'image_name': Path(r['image_path']).parts[-1],
|
|
|
167 |
}
|
|
|
|
|
|
|
|
|
168 |
yield i, example
|