Datasets:

Languages:
English
ArXiv:
License:
mdd / mdd.py
system's picture
system HF staff
Update files from the datasets library (from 1.16.0)
ca521b1
raw
history blame
10.2 kB
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Movie Dialog Dataset."""
import datasets
_CITATION = """\
@misc{dodge2016evaluating,
title={Evaluating Prerequisite Qualities for Learning End-to-End Dialog Systems},
author={Jesse Dodge and Andreea Gane and Xiang Zhang and Antoine Bordes and Sumit Chopra and Alexander Miller and Arthur Szlam and Jason Weston},
year={2016},
eprint={1511.06931},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
_DESCRIPTION = """\
The Movie Dialog dataset (MDD) is designed to measure how well
models can perform at goal and non-goal orientated dialog
centered around the topic of movies (question answering,
recommendation and discussion).
"""
_HOMEPAGE = "https://research.fb.com/downloads/babi/"
_LICENSE = """Creative Commons Attribution 3.0 License"""
ZIP_URL = "http://www.thespermwhale.com/jaseweston/babi/movie_dialog_dataset.tgz"
REDDIT_URL = "http://tinyurl.com/p6tyohj"
dir = "movie_dialog_dataset/"
dir2 = ""
paths = {
"task1_qa": {
"train": dir + "task1_qa/task1_qa_train.txt",
"dev": dir + "task1_qa/task1_qa_dev.txt",
"test": dir + "task1_qa/task1_qa_test.txt",
},
"task2_recs": {
"train": dir + "task2_recs/task2_recs_train.txt",
"dev": dir + "task2_recs/task2_recs_dev.txt",
"test": dir + "task2_recs/task2_recs_test.txt",
},
"task3_qarecs": {
"train": dir + "task3_qarecs/task3_qarecs_train.txt",
"dev": dir + "task3_qarecs/task3_qarecs_dev.txt",
"test": dir + "task3_qarecs/task3_qarecs_test.txt",
},
"task4_reddit": {
"train": "task4_reddit/task4_reddit_train.txt",
"dev": "task4_reddit/task4_reddit_dev.txt",
"test": "task4_reddit/task4_reddit_test.txt",
"cand_valid": "task4_reddit/task4_reddit_cand-valid.txt",
"cand_test": "task4_reddit/task4_reddit_cand-test.txt",
},
}
class Mdd(datasets.GeneratorBasedBuilder):
"""The Movie Dialog Dataset"""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="task1_qa", version=VERSION, description="This part of my dataset covers task1_qa part of the dataset"
),
datasets.BuilderConfig(
name="task2_recs",
version=VERSION,
description="This part of my dataset covers task2_recs part of the dataset",
),
datasets.BuilderConfig(
name="task3_qarecs",
version=VERSION,
description="This part of my dataset covers task3_qarecs part of the dataset",
),
datasets.BuilderConfig(
name="task4_reddit",
version=VERSION,
description="This part of my dataset covers task4_reddit part of the dataset",
),
]
def _info(self):
features = datasets.Features(
{
"dialogue_turns": datasets.Sequence(
{
"speaker": datasets.Value("int32"),
"utterance": datasets.Value("string"),
}
),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
if self.config.name != "task4_reddit":
my_urls = ZIP_URL # Cannot download just one single type as it is a compressed file.
else:
my_urls = REDDIT_URL
archive = dl_manager.download(my_urls)
splits = [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": paths[self.config.name]["train"], "files": dl_manager.iter_archive(archive)},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": paths[self.config.name]["test"], "files": dl_manager.iter_archive(archive)},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": paths[self.config.name]["dev"], "files": dl_manager.iter_archive(archive)},
),
]
if self.config.name == "task4_reddit":
splits += [
datasets.SplitGenerator(
name=datasets.Split("cand_valid"),
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": paths[self.config.name]["cand_valid"],
"files": dl_manager.iter_archive(archive),
},
),
datasets.SplitGenerator(
name=datasets.Split("cand_test"),
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": paths[self.config.name]["cand_test"],
"files": dl_manager.iter_archive(archive),
},
),
]
return splits
def _generate_examples(self, filepath, files):
for path, f in files:
if path == filepath:
if "cand" not in filepath:
dialogue_turns = []
example_idx = 0
for idx, line in enumerate(f):
line = line.decode("utf-8")
if line.strip() == "":
if dialogue_turns != []:
yield example_idx, {"dialogue_turns": dialogue_turns}
example_idx += 1
dialogue_turns = []
elif line.strip().split()[0] == "1": # New convo
if dialogue_turns != []: # Already some convo, flush it out
yield example_idx, {"dialogue_turns": dialogue_turns}
example_idx += 1
dialogue_turns = []
exchange = line[len(line.split()[0]) :].strip().split("\t") # Skip the number in the front
sp1 = exchange[0]
sp2 = exchange[-1] # Might contain multiple tabs in between.
dialogue_turns.append({"speaker": 0, "utterance": sp1})
dialogue_turns.append({"speaker": 1, "utterance": sp2})
else:
exchange = line[len(line.split()[0]) :].strip().split("\t") # Skip the number in the front
sp1 = exchange[0]
sp2 = exchange[-1] # Might contain multiple tabs in between.
dialogue_turns.append({"speaker": 0, "utterance": sp1})
dialogue_turns.append({"speaker": 1, "utterance": sp2})
else:
if dialogue_turns != []:
yield example_idx, {"dialogue_turns": dialogue_turns}
else:
dialogue_turns = []
example_idx = 0
for idx, line in enumerate(f):
line = line.decode("utf-8")
if line.strip() == "":
if dialogue_turns != []:
yield example_idx, {"dialogue_turns": dialogue_turns}
example_idx += 1
dialogue_turns = []
elif line.strip().split()[0] == "1": # New convo
if dialogue_turns != []: # Already some convo, flush it out
yield example_idx, {"dialogue_turns": dialogue_turns}
example_idx += 1
dialogue_turns = []
exchange = line[len(line.split()[0]) :].strip() # Skip the number in the front
sp1 = exchange
dialogue_turns.append({"speaker": 0, "utterance": sp1})
else:
exchange = line[len(line.split()[0]) :].strip() # Skip the number in the front
sp1 = exchange
dialogue_turns.append({"speaker": 0, "utterance": sp1})
else: # Last line, new example
if dialogue_turns != []:
yield example_idx, {"dialogue_turns": dialogue_turns}
break