|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Movie Dialog Dataset.""" |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@misc{dodge2016evaluating, |
|
title={Evaluating Prerequisite Qualities for Learning End-to-End Dialog Systems}, |
|
author={Jesse Dodge and Andreea Gane and Xiang Zhang and Antoine Bordes and Sumit Chopra and Alexander Miller and Arthur Szlam and Jason Weston}, |
|
year={2016}, |
|
eprint={1511.06931}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
The Movie Dialog dataset (MDD) is designed to measure how well |
|
models can perform at goal and non-goal orientated dialog |
|
centered around the topic of movies (question answering, |
|
recommendation and discussion). |
|
|
|
""" |
|
|
|
_HOMEPAGE = "https://research.fb.com/downloads/babi/" |
|
|
|
_LICENSE = """Creative Commons Attribution 3.0 License""" |
|
|
|
ZIP_URL = "http://www.thespermwhale.com/jaseweston/babi/movie_dialog_dataset.tgz" |
|
REDDIT_URL = "http://tinyurl.com/p6tyohj" |
|
dir = "movie_dialog_dataset/" |
|
dir2 = "" |
|
paths = { |
|
"task1_qa": { |
|
"train": dir + "task1_qa/task1_qa_train.txt", |
|
"dev": dir + "task1_qa/task1_qa_dev.txt", |
|
"test": dir + "task1_qa/task1_qa_test.txt", |
|
}, |
|
"task2_recs": { |
|
"train": dir + "task2_recs/task2_recs_train.txt", |
|
"dev": dir + "task2_recs/task2_recs_dev.txt", |
|
"test": dir + "task2_recs/task2_recs_test.txt", |
|
}, |
|
"task3_qarecs": { |
|
"train": dir + "task3_qarecs/task3_qarecs_train.txt", |
|
"dev": dir + "task3_qarecs/task3_qarecs_dev.txt", |
|
"test": dir + "task3_qarecs/task3_qarecs_test.txt", |
|
}, |
|
"task4_reddit": { |
|
"train": "task4_reddit/task4_reddit_train.txt", |
|
"dev": "task4_reddit/task4_reddit_dev.txt", |
|
"test": "task4_reddit/task4_reddit_test.txt", |
|
"cand_valid": "task4_reddit/task4_reddit_cand-valid.txt", |
|
"cand_test": "task4_reddit/task4_reddit_cand-test.txt", |
|
}, |
|
} |
|
|
|
|
|
class Mdd(datasets.GeneratorBasedBuilder): |
|
"""The Movie Dialog Dataset""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="task1_qa", version=VERSION, description="This part of my dataset covers task1_qa part of the dataset" |
|
), |
|
datasets.BuilderConfig( |
|
name="task2_recs", |
|
version=VERSION, |
|
description="This part of my dataset covers task2_recs part of the dataset", |
|
), |
|
datasets.BuilderConfig( |
|
name="task3_qarecs", |
|
version=VERSION, |
|
description="This part of my dataset covers task3_qarecs part of the dataset", |
|
), |
|
datasets.BuilderConfig( |
|
name="task4_reddit", |
|
version=VERSION, |
|
description="This part of my dataset covers task4_reddit part of the dataset", |
|
), |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"dialogue_turns": datasets.Sequence( |
|
{ |
|
"speaker": datasets.Value("int32"), |
|
"utterance": datasets.Value("string"), |
|
} |
|
), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
|
|
|
|
|
|
supervised_keys=None, |
|
|
|
homepage=_HOMEPAGE, |
|
|
|
license=_LICENSE, |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
if self.config.name != "task4_reddit": |
|
my_urls = ZIP_URL |
|
else: |
|
my_urls = REDDIT_URL |
|
archive = dl_manager.download(my_urls) |
|
splits = [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={"filepath": paths[self.config.name]["train"], "files": dl_manager.iter_archive(archive)}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={"filepath": paths[self.config.name]["test"], "files": dl_manager.iter_archive(archive)}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={"filepath": paths[self.config.name]["dev"], "files": dl_manager.iter_archive(archive)}, |
|
), |
|
] |
|
if self.config.name == "task4_reddit": |
|
splits += [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split("cand_valid"), |
|
|
|
gen_kwargs={ |
|
"filepath": paths[self.config.name]["cand_valid"], |
|
"files": dl_manager.iter_archive(archive), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split("cand_test"), |
|
|
|
gen_kwargs={ |
|
"filepath": paths[self.config.name]["cand_test"], |
|
"files": dl_manager.iter_archive(archive), |
|
}, |
|
), |
|
] |
|
return splits |
|
|
|
def _generate_examples(self, filepath, files): |
|
for path, f in files: |
|
if path == filepath: |
|
if "cand" not in filepath: |
|
dialogue_turns = [] |
|
example_idx = 0 |
|
for idx, line in enumerate(f): |
|
line = line.decode("utf-8") |
|
if line.strip() == "": |
|
if dialogue_turns != []: |
|
yield example_idx, {"dialogue_turns": dialogue_turns} |
|
example_idx += 1 |
|
dialogue_turns = [] |
|
elif line.strip().split()[0] == "1": |
|
if dialogue_turns != []: |
|
yield example_idx, {"dialogue_turns": dialogue_turns} |
|
example_idx += 1 |
|
dialogue_turns = [] |
|
exchange = line[len(line.split()[0]) :].strip().split("\t") |
|
sp1 = exchange[0] |
|
sp2 = exchange[-1] |
|
dialogue_turns.append({"speaker": 0, "utterance": sp1}) |
|
dialogue_turns.append({"speaker": 1, "utterance": sp2}) |
|
else: |
|
exchange = line[len(line.split()[0]) :].strip().split("\t") |
|
sp1 = exchange[0] |
|
sp2 = exchange[-1] |
|
dialogue_turns.append({"speaker": 0, "utterance": sp1}) |
|
dialogue_turns.append({"speaker": 1, "utterance": sp2}) |
|
else: |
|
if dialogue_turns != []: |
|
yield example_idx, {"dialogue_turns": dialogue_turns} |
|
else: |
|
dialogue_turns = [] |
|
example_idx = 0 |
|
for idx, line in enumerate(f): |
|
line = line.decode("utf-8") |
|
if line.strip() == "": |
|
if dialogue_turns != []: |
|
yield example_idx, {"dialogue_turns": dialogue_turns} |
|
example_idx += 1 |
|
dialogue_turns = [] |
|
elif line.strip().split()[0] == "1": |
|
if dialogue_turns != []: |
|
yield example_idx, {"dialogue_turns": dialogue_turns} |
|
example_idx += 1 |
|
dialogue_turns = [] |
|
exchange = line[len(line.split()[0]) :].strip() |
|
sp1 = exchange |
|
dialogue_turns.append({"speaker": 0, "utterance": sp1}) |
|
else: |
|
exchange = line[len(line.split()[0]) :].strip() |
|
sp1 = exchange |
|
dialogue_turns.append({"speaker": 0, "utterance": sp1}) |
|
else: |
|
if dialogue_turns != []: |
|
yield example_idx, {"dialogue_turns": dialogue_turns} |
|
break |
|
|