Commit
•
b1ea4e2
0
Parent(s):
Update files from the datasets library (from 1.2.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.2.0
- .gitattributes +27 -0
- README.md +251 -0
- dataset_infos.json +1 -0
- dummy/convai2_inferred/1.0.0/dummy_data.zip +3 -0
- dummy/funpedia/1.0.0/dummy_data.zip +3 -0
- dummy/gendered_words/1.0.0/dummy_data.zip +3 -0
- dummy/image_chat/1.0.0/dummy_data.zip +3 -0
- dummy/light_inferred/1.0.0/dummy_data.zip +3 -0
- dummy/name_genders/1.0.0/dummy_data.zip +3 -0
- dummy/new_data/1.0.0/dummy_data.zip +3 -0
- dummy/opensubtitles_inferred/1.0.0/dummy_data.zip +3 -0
- dummy/wizard/1.0.0/dummy_data.zip +3 -0
- dummy/yelp_inferred/1.0.0/dummy_data.zip +3 -0
- md_gender_bias.py +410 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,251 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
convai2_inferred:
|
4 |
+
- machine-generated
|
5 |
+
funpedia:
|
6 |
+
- found
|
7 |
+
gendered_words:
|
8 |
+
- found
|
9 |
+
image_chat:
|
10 |
+
- found
|
11 |
+
light_inferred:
|
12 |
+
- machine-generated
|
13 |
+
name_genders:
|
14 |
+
- found
|
15 |
+
new_data:
|
16 |
+
- crowdsourced
|
17 |
+
- found
|
18 |
+
opensubtitles_inferred:
|
19 |
+
- machine-generated
|
20 |
+
wizard:
|
21 |
+
- found
|
22 |
+
yelp_inferred:
|
23 |
+
- machine-generated
|
24 |
+
language_creators:
|
25 |
+
convai2_inferred:
|
26 |
+
- found
|
27 |
+
funpedia:
|
28 |
+
- found
|
29 |
+
gendered_words:
|
30 |
+
- found
|
31 |
+
image_chat:
|
32 |
+
- found
|
33 |
+
light_inferred:
|
34 |
+
- found
|
35 |
+
name_genders:
|
36 |
+
- found
|
37 |
+
new_data:
|
38 |
+
- crowdsourced
|
39 |
+
- found
|
40 |
+
opensubtitles_inferred:
|
41 |
+
- found
|
42 |
+
wizard:
|
43 |
+
- found
|
44 |
+
yelp_inferred:
|
45 |
+
- found
|
46 |
+
languages:
|
47 |
+
- en
|
48 |
+
licenses:
|
49 |
+
- mit
|
50 |
+
multilinguality:
|
51 |
+
- monolingual
|
52 |
+
size_categories:
|
53 |
+
convai2_inferred:
|
54 |
+
- 100K<n<1M
|
55 |
+
funpedia:
|
56 |
+
- 10K<n<100K
|
57 |
+
gendered_words:
|
58 |
+
- n<1K
|
59 |
+
image_chat:
|
60 |
+
- 100K<n<1M
|
61 |
+
light_inferred:
|
62 |
+
- 100K<n<1M
|
63 |
+
name_genders:
|
64 |
+
- n>1M
|
65 |
+
new_data:
|
66 |
+
- 1K<n<10K
|
67 |
+
opensubtitles_inferred:
|
68 |
+
- 100K<n<1M
|
69 |
+
wizard:
|
70 |
+
- 10K<n<100K
|
71 |
+
yelp_inferred:
|
72 |
+
- n>1M
|
73 |
+
source_datasets:
|
74 |
+
convai2_inferred:
|
75 |
+
- extended|other-convai2
|
76 |
+
- original
|
77 |
+
funpedia:
|
78 |
+
- original
|
79 |
+
gendered_words:
|
80 |
+
- original
|
81 |
+
image_chat:
|
82 |
+
- original
|
83 |
+
light_inferred:
|
84 |
+
- extended|other-light
|
85 |
+
- original
|
86 |
+
name_genders:
|
87 |
+
- original
|
88 |
+
new_data:
|
89 |
+
- original
|
90 |
+
opensubtitles_inferred:
|
91 |
+
- extended|other-opensubtitles
|
92 |
+
- original
|
93 |
+
wizard:
|
94 |
+
- original
|
95 |
+
yelp_inferred:
|
96 |
+
- extended|other-yelp
|
97 |
+
- original
|
98 |
+
task_categories:
|
99 |
+
- text-classification
|
100 |
+
task_ids:
|
101 |
+
- text-classification-other-gender-bias
|
102 |
+
---
|
103 |
+
|
104 |
+
# Dataset Card for Multi-Dimensional Gender Bias Classification
|
105 |
+
|
106 |
+
## Table of Contents
|
107 |
+
- [Dataset Description](#dataset-description)
|
108 |
+
- [Dataset Summary](#dataset-summary)
|
109 |
+
- [Supported Tasks](#supported-tasks-and-leaderboards)
|
110 |
+
- [Languages](#languages)
|
111 |
+
- [Dataset Structure](#dataset-structure)
|
112 |
+
- [Data Instances](#data-instances)
|
113 |
+
- [Data Fields](#data-instances)
|
114 |
+
- [Data Splits](#data-instances)
|
115 |
+
- [Dataset Creation](#dataset-creation)
|
116 |
+
- [Curation Rationale](#curation-rationale)
|
117 |
+
- [Source Data](#source-data)
|
118 |
+
- [Annotations](#annotations)
|
119 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
120 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
121 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
122 |
+
- [Discussion of Biases](#discussion-of-biases)
|
123 |
+
- [Other Known Limitations](#other-known-limitations)
|
124 |
+
- [Additional Information](#additional-information)
|
125 |
+
- [Dataset Curators](#dataset-curators)
|
126 |
+
- [Licensing Information](#licensing-information)
|
127 |
+
- [Citation Information](#citation-information)
|
128 |
+
|
129 |
+
## Dataset Description
|
130 |
+
|
131 |
+
- **Homepage:** https://parl.ai/projects/md_gender/
|
132 |
+
- **Repository:** [Needs More Information]
|
133 |
+
- **Paper:** https://arxiv.org/abs/2005.00614
|
134 |
+
- **Leaderboard:** [Needs More Information]
|
135 |
+
- **Point of Contact:** edinan@fb.com
|
136 |
+
|
137 |
+
### Dataset Summary
|
138 |
+
|
139 |
+
Machine learning models are trained to find patterns in data.
|
140 |
+
NLP models can inadvertently learn socially undesirable patterns when training on gender biased text.
|
141 |
+
In this work, we propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions:
|
142 |
+
bias from the gender of the person being spoken about, bias from the gender of the person being spoken to, and bias from the gender of the speaker.
|
143 |
+
Using this fine-grained framework, we automatically annotate eight large scale datasets with gender information.
|
144 |
+
In addition, we collect a novel, crowdsourced evaluation benchmark of utterance-level gender rewrites.
|
145 |
+
Distinguishing between gender bias along multiple dimensions is important, as it enables us to train finer-grained gender bias classifiers.
|
146 |
+
We show our classifiers prove valuable for a variety of important applications, such as controlling for gender bias in generative models,
|
147 |
+
detecting gender bias in arbitrary text, and shed light on offensive language in terms of genderedness.
|
148 |
+
|
149 |
+
### Supported Tasks and Leaderboards
|
150 |
+
|
151 |
+
[Needs More Information]
|
152 |
+
|
153 |
+
### Languages
|
154 |
+
|
155 |
+
The data is in English (`en`)
|
156 |
+
|
157 |
+
## Dataset Structure
|
158 |
+
|
159 |
+
### Data Instances
|
160 |
+
|
161 |
+
[Needs More Information]
|
162 |
+
|
163 |
+
### Data Fields
|
164 |
+
|
165 |
+
The data has the following features.
|
166 |
+
|
167 |
+
For the `new_data` config:
|
168 |
+
- `text`: the text to be classified
|
169 |
+
- `original`: the text before reformulation
|
170 |
+
- `labels`: a `list` of classification labels, with possible values including `ABOUT:female`, `ABOUT:male`, `PARTNER:female`, `PARTNER:male`, `SELF:female`.
|
171 |
+
- `class_type`: a classification label, with possible values including `about`, `partner`, `self`.
|
172 |
+
- `turker_gender`: a classification label, with possible values including `man`, `woman`, `nonbinary`, `prefer not to say`, `no answer`.
|
173 |
+
|
174 |
+
For the other annotated datasets:
|
175 |
+
- `text`: the text to be classified.
|
176 |
+
- `gender`: a classification label, with possible values including `gender-neutral`, `female`, `male`.
|
177 |
+
|
178 |
+
For the `_inferred` configurations:
|
179 |
+
- `text`: the text to be classified.
|
180 |
+
- `binary_label`: a classification label, with possible values including `ABOUT:female`, `ABOUT:male`.
|
181 |
+
- `binary_score`: a score between 0 and 1.
|
182 |
+
- `ternary_label`: a classification label, with possible values including `ABOUT:female`, `ABOUT:male`, `ABOUT:gender-neutral`.
|
183 |
+
- `ternary_score`: a score between 0 and 1.
|
184 |
+
|
185 |
+
### Data Splits
|
186 |
+
|
187 |
+
The different parts of the data can be accessed through the different configurations:
|
188 |
+
- `gendered_words`: A list of common nouns with a masculine and feminine variant.
|
189 |
+
- `new_data`: Sentences reformulated and annotated along all three axes.
|
190 |
+
- `funpedia`, `wizard`: Sentences from Funpedia and Wizards of Wikipedia annotated with ABOUT gender with entity gender information.
|
191 |
+
- `image_chat`: sentences about images annotated with ABOUT gender based on gender information from the entities in the image
|
192 |
+
- `convai2_inferred`, `light_inferred`, `opensubtitles_inferred`, `yelp_inferred`: Data from several source datasets with ABOUT annotations inferred by a trined classifier.
|
193 |
+
|
194 |
+
|
195 |
+
## Dataset Creation
|
196 |
+
|
197 |
+
### Curation Rationale
|
198 |
+
|
199 |
+
[Needs More Information]
|
200 |
+
|
201 |
+
### Source Data
|
202 |
+
|
203 |
+
#### Initial Data Collection and Normalization
|
204 |
+
|
205 |
+
[Needs More Information]
|
206 |
+
|
207 |
+
#### Who are the source language producers?
|
208 |
+
|
209 |
+
[Needs More Information]
|
210 |
+
|
211 |
+
### Annotations
|
212 |
+
|
213 |
+
#### Annotation process
|
214 |
+
|
215 |
+
[Needs More Information]
|
216 |
+
|
217 |
+
#### Who are the annotators?
|
218 |
+
|
219 |
+
[Needs More Information]
|
220 |
+
|
221 |
+
### Personal and Sensitive Information
|
222 |
+
|
223 |
+
[Needs More Information]
|
224 |
+
|
225 |
+
## Considerations for Using the Data
|
226 |
+
|
227 |
+
### Social Impact of Dataset
|
228 |
+
|
229 |
+
[Needs More Information]
|
230 |
+
|
231 |
+
### Discussion of Biases
|
232 |
+
|
233 |
+
[Needs More Information]
|
234 |
+
|
235 |
+
### Other Known Limitations
|
236 |
+
|
237 |
+
[Needs More Information]
|
238 |
+
|
239 |
+
## Additional Information
|
240 |
+
|
241 |
+
### Dataset Curators
|
242 |
+
|
243 |
+
[Needs More Information]
|
244 |
+
|
245 |
+
### Licensing Information
|
246 |
+
|
247 |
+
[Needs More Information]
|
248 |
+
|
249 |
+
### Citation Information
|
250 |
+
|
251 |
+
[Needs More Information]
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"gendered_words": {"description": "Machine learning models are trained to find patterns in data.\nNLP models can inadvertently learn socially undesirable patterns when training on gender biased text.\nIn this work, we propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions:\nbias from the gender of the person being spoken about, bias from the gender of the person being spoken to, and bias from the gender of the speaker.\nUsing this fine-grained framework, we automatically annotate eight large scale datasets with gender information.\nIn addition, we collect a novel, crowdsourced evaluation benchmark of utterance-level gender rewrites.\nDistinguishing between gender bias along multiple dimensions is important, as it enables us to train finer-grained gender bias classifiers.\nWe show our classifiers prove valuable for a variety of important applications, such as controlling for gender bias in generative models,\ndetecting gender bias in arbitrary text, and shed light on offensive language in terms of genderedness.\n", "citation": "@inproceedings{md_gender_bias,\n author = {Emily Dinan and\n Angela Fan and\n Ledell Wu and\n Jason Weston and\n Douwe Kiela and\n Adina Williams},\n editor = {Bonnie Webber and\n Trevor Cohn and\n Yulan He and\n Yang Liu},\n title = {Multi-Dimensional Gender Bias Classification},\n booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural\n Language Processing, {EMNLP} 2020, Online, November 16-20, 2020},\n pages = {314--331},\n publisher = {Association for Computational Linguistics},\n year = {2020},\n url = {https://www.aclweb.org/anthology/2020.emnlp-main.23/}\n}\n", "homepage": "https://parl.ai/projects/md_gender/", "license": "MIT License", "features": {"word_masculine": {"dtype": "string", "id": null, "_type": "Value"}, "word_feminine": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "md_gender_bias", "config_name": "gendered_words", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 4988, "num_examples": 222, "dataset_name": "md_gender_bias"}}, "download_checksums": {"http://parl.ai/downloads/md_gender/gend_multiclass_10072020.tgz": {"num_bytes": 232629010, "checksum": "c2c03257c53497b9e453600201fc7245b55dec1d98965093b4657fdb54822e9d"}}, "download_size": 232629010, "post_processing_size": null, "dataset_size": 4988, "size_in_bytes": 232633998}, "name_genders": {"description": "Machine learning models are trained to find patterns in data.\nNLP models can inadvertently learn socially undesirable patterns when training on gender biased text.\nIn this work, we propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions:\nbias from the gender of the person being spoken about, bias from the gender of the person being spoken to, and bias from the gender of the speaker.\nUsing this fine-grained framework, we automatically annotate eight large scale datasets with gender information.\nIn addition, we collect a novel, crowdsourced evaluation benchmark of utterance-level gender rewrites.\nDistinguishing between gender bias along multiple dimensions is important, as it enables us to train finer-grained gender bias classifiers.\nWe show our classifiers prove valuable for a variety of important applications, such as controlling for gender bias in generative models,\ndetecting gender bias in arbitrary text, and shed light on offensive language in terms of genderedness.\n", "citation": "@inproceedings{md_gender_bias,\n author = {Emily Dinan and\n Angela Fan and\n Ledell Wu and\n Jason Weston and\n Douwe Kiela and\n Adina Williams},\n editor = {Bonnie Webber and\n Trevor Cohn and\n Yulan He and\n Yang Liu},\n title = {Multi-Dimensional Gender Bias Classification},\n booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural\n Language Processing, {EMNLP} 2020, Online, November 16-20, 2020},\n pages = {314--331},\n publisher = {Association for Computational Linguistics},\n year = {2020},\n url = {https://www.aclweb.org/anthology/2020.emnlp-main.23/}\n}\n", "homepage": "https://parl.ai/projects/md_gender/", "license": "MIT License", "features": {"name": {"dtype": "string", "id": null, "_type": "Value"}, "assigned_gender": {"num_classes": 2, "names": ["M", "F"], "names_file": null, "id": null, "_type": "ClassLabel"}, "count": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "md_gender_bias", "config_name": "name_genders", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"yob1880": {"name": "yob1880", "num_bytes": 43404, "num_examples": 2000, "dataset_name": "md_gender_bias"}, "yob1881": {"name": "yob1881", "num_bytes": 41944, "num_examples": 1935, "dataset_name": "md_gender_bias"}, "yob1882": {"name": "yob1882", "num_bytes": 46211, "num_examples": 2127, "dataset_name": "md_gender_bias"}, "yob1883": {"name": "yob1883", "num_bytes": 45221, "num_examples": 2084, "dataset_name": "md_gender_bias"}, "yob1884": {"name": "yob1884", "num_bytes": 49886, "num_examples": 2297, "dataset_name": "md_gender_bias"}, "yob1885": {"name": "yob1885", "num_bytes": 49810, "num_examples": 2294, "dataset_name": "md_gender_bias"}, "yob1886": {"name": "yob1886", "num_bytes": 51935, "num_examples": 2392, "dataset_name": "md_gender_bias"}, "yob1887": {"name": "yob1887", "num_bytes": 51458, "num_examples": 2373, "dataset_name": "md_gender_bias"}, "yob1888": {"name": "yob1888", "num_bytes": 57531, "num_examples": 2651, "dataset_name": "md_gender_bias"}, "yob1889": {"name": "yob1889", "num_bytes": 56177, "num_examples": 2590, "dataset_name": "md_gender_bias"}, "yob1890": {"name": "yob1890", "num_bytes": 58509, "num_examples": 2695, "dataset_name": "md_gender_bias"}, "yob1891": {"name": "yob1891", "num_bytes": 57767, "num_examples": 2660, "dataset_name": "md_gender_bias"}, "yob1892": {"name": "yob1892", "num_bytes": 63493, "num_examples": 2921, "dataset_name": "md_gender_bias"}, "yob1893": {"name": "yob1893", "num_bytes": 61525, "num_examples": 2831, "dataset_name": "md_gender_bias"}, "yob1894": {"name": "yob1894", "num_bytes": 63927, "num_examples": 2941, "dataset_name": "md_gender_bias"}, "yob1895": {"name": "yob1895", "num_bytes": 66346, "num_examples": 3049, "dataset_name": "md_gender_bias"}, "yob1896": {"name": "yob1896", "num_bytes": 67224, "num_examples": 3091, "dataset_name": "md_gender_bias"}, "yob1897": {"name": "yob1897", "num_bytes": 65886, "num_examples": 3028, "dataset_name": "md_gender_bias"}, "yob1898": {"name": "yob1898", "num_bytes": 71088, "num_examples": 3264, "dataset_name": "md_gender_bias"}, "yob1899": {"name": "yob1899", "num_bytes": 66225, "num_examples": 3042, "dataset_name": "md_gender_bias"}, "yob1900": {"name": "yob1900", "num_bytes": 81305, "num_examples": 3730, "dataset_name": "md_gender_bias"}, "yob1901": {"name": "yob1901", "num_bytes": 68723, "num_examples": 3153, "dataset_name": "md_gender_bias"}, "yob1902": {"name": "yob1902", "num_bytes": 73321, "num_examples": 3362, "dataset_name": "md_gender_bias"}, "yob1903": {"name": "yob1903", "num_bytes": 74019, "num_examples": 3389, "dataset_name": "md_gender_bias"}, "yob1904": {"name": "yob1904", "num_bytes": 77751, "num_examples": 3560, "dataset_name": "md_gender_bias"}, "yob1905": {"name": "yob1905", "num_bytes": 79802, "num_examples": 3655, "dataset_name": "md_gender_bias"}, "yob1906": {"name": "yob1906", "num_bytes": 79392, "num_examples": 3633, "dataset_name": "md_gender_bias"}, "yob1907": {"name": "yob1907", "num_bytes": 86342, "num_examples": 3948, "dataset_name": "md_gender_bias"}, "yob1908": {"name": "yob1908", "num_bytes": 87965, "num_examples": 4018, "dataset_name": "md_gender_bias"}, "yob1909": {"name": "yob1909", "num_bytes": 92591, "num_examples": 4227, "dataset_name": "md_gender_bias"}, "yob1910": {"name": "yob1910", "num_bytes": 101491, "num_examples": 4629, "dataset_name": "md_gender_bias"}, "yob1911": {"name": "yob1911", "num_bytes": 106787, "num_examples": 4867, "dataset_name": "md_gender_bias"}, "yob1912": {"name": "yob1912", "num_bytes": 139448, "num_examples": 6351, "dataset_name": "md_gender_bias"}, "yob1913": {"name": "yob1913", "num_bytes": 153110, "num_examples": 6968, "dataset_name": "md_gender_bias"}, "yob1914": {"name": "yob1914", "num_bytes": 175167, "num_examples": 7965, "dataset_name": "md_gender_bias"}, "yob1915": {"name": "yob1915", "num_bytes": 205921, "num_examples": 9357, "dataset_name": "md_gender_bias"}, "yob1916": {"name": "yob1916", "num_bytes": 213468, "num_examples": 9696, "dataset_name": "md_gender_bias"}, "yob1917": {"name": "yob1917", "num_bytes": 218446, "num_examples": 9913, "dataset_name": "md_gender_bias"}, "yob1918": {"name": "yob1918", "num_bytes": 229209, "num_examples": 10398, "dataset_name": "md_gender_bias"}, "yob1919": {"name": "yob1919", "num_bytes": 228656, "num_examples": 10369, "dataset_name": "md_gender_bias"}, "yob1920": {"name": "yob1920", "num_bytes": 237286, "num_examples": 10756, "dataset_name": "md_gender_bias"}, "yob1921": {"name": "yob1921", "num_bytes": 239616, "num_examples": 10857, "dataset_name": "md_gender_bias"}, "yob1922": {"name": "yob1922", "num_bytes": 237569, "num_examples": 10756, "dataset_name": "md_gender_bias"}, "yob1923": {"name": "yob1923", "num_bytes": 235046, "num_examples": 10643, "dataset_name": "md_gender_bias"}, "yob1924": {"name": "yob1924", "num_bytes": 240113, "num_examples": 10869, "dataset_name": "md_gender_bias"}, "yob1925": {"name": "yob1925", "num_bytes": 235098, "num_examples": 10638, "dataset_name": "md_gender_bias"}, "yob1926": {"name": "yob1926", "num_bytes": 230970, "num_examples": 10458, "dataset_name": "md_gender_bias"}, "yob1927": {"name": "yob1927", "num_bytes": 230004, "num_examples": 10406, "dataset_name": "md_gender_bias"}, "yob1928": {"name": "yob1928", "num_bytes": 224583, "num_examples": 10159, "dataset_name": "md_gender_bias"}, "yob1929": {"name": "yob1929", "num_bytes": 217057, "num_examples": 9820, "dataset_name": "md_gender_bias"}, "yob1930": {"name": "yob1930", "num_bytes": 216352, "num_examples": 9791, "dataset_name": "md_gender_bias"}, "yob1931": {"name": "yob1931", "num_bytes": 205361, "num_examples": 9298, "dataset_name": "md_gender_bias"}, "yob1932": {"name": "yob1932", "num_bytes": 207268, "num_examples": 9381, "dataset_name": "md_gender_bias"}, "yob1933": {"name": "yob1933", "num_bytes": 199031, "num_examples": 9013, "dataset_name": "md_gender_bias"}, "yob1934": {"name": "yob1934", "num_bytes": 202758, "num_examples": 9180, "dataset_name": "md_gender_bias"}, "yob1935": {"name": "yob1935", "num_bytes": 199614, "num_examples": 9037, "dataset_name": "md_gender_bias"}, "yob1936": {"name": "yob1936", "num_bytes": 196379, "num_examples": 8894, "dataset_name": "md_gender_bias"}, "yob1937": {"name": "yob1937", "num_bytes": 197757, "num_examples": 8946, "dataset_name": "md_gender_bias"}, "yob1938": {"name": "yob1938", "num_bytes": 199603, "num_examples": 9032, "dataset_name": "md_gender_bias"}, "yob1939": {"name": "yob1939", "num_bytes": 196979, "num_examples": 8918, "dataset_name": "md_gender_bias"}, "yob1940": {"name": "yob1940", "num_bytes": 198141, "num_examples": 8961, "dataset_name": "md_gender_bias"}, "yob1941": {"name": "yob1941", "num_bytes": 200858, "num_examples": 9085, "dataset_name": "md_gender_bias"}, "yob1942": {"name": "yob1942", "num_bytes": 208363, "num_examples": 9425, "dataset_name": "md_gender_bias"}, "yob1943": {"name": "yob1943", "num_bytes": 207940, "num_examples": 9408, "dataset_name": "md_gender_bias"}, "yob1944": {"name": "yob1944", "num_bytes": 202227, "num_examples": 9152, "dataset_name": "md_gender_bias"}, "yob1945": {"name": "yob1945", "num_bytes": 199478, "num_examples": 9025, "dataset_name": "md_gender_bias"}, "yob1946": {"name": "yob1946", "num_bytes": 214614, "num_examples": 9705, "dataset_name": "md_gender_bias"}, "yob1947": {"name": "yob1947", "num_bytes": 229327, "num_examples": 10371, "dataset_name": "md_gender_bias"}, "yob1948": {"name": "yob1948", "num_bytes": 226615, "num_examples": 10241, "dataset_name": "md_gender_bias"}, "yob1949": {"name": "yob1949", "num_bytes": 227278, "num_examples": 10269, "dataset_name": "md_gender_bias"}, "yob1950": {"name": "yob1950", "num_bytes": 227946, "num_examples": 10303, "dataset_name": "md_gender_bias"}, "yob1951": {"name": "yob1951", "num_bytes": 231613, "num_examples": 10462, "dataset_name": "md_gender_bias"}, "yob1952": {"name": "yob1952", "num_bytes": 235483, "num_examples": 10646, "dataset_name": "md_gender_bias"}, "yob1953": {"name": "yob1953", "num_bytes": 239654, "num_examples": 10837, "dataset_name": "md_gender_bias"}, "yob1954": {"name": "yob1954", "num_bytes": 242389, "num_examples": 10968, "dataset_name": "md_gender_bias"}, "yob1955": {"name": "yob1955", "num_bytes": 245652, "num_examples": 11115, "dataset_name": "md_gender_bias"}, "yob1956": {"name": "yob1956", "num_bytes": 250674, "num_examples": 11340, "dataset_name": "md_gender_bias"}, "yob1957": {"name": "yob1957", "num_bytes": 255370, "num_examples": 11564, "dataset_name": "md_gender_bias"}, "yob1958": {"name": "yob1958", "num_bytes": 254520, "num_examples": 11522, "dataset_name": "md_gender_bias"}, "yob1959": {"name": "yob1959", "num_bytes": 260051, "num_examples": 11767, "dataset_name": "md_gender_bias"}, "yob1960": {"name": "yob1960", "num_bytes": 263474, "num_examples": 11921, "dataset_name": "md_gender_bias"}, "yob1961": {"name": "yob1961", "num_bytes": 269493, "num_examples": 12182, "dataset_name": "md_gender_bias"}, "yob1962": {"name": "yob1962", "num_bytes": 270244, "num_examples": 12209, "dataset_name": "md_gender_bias"}, "yob1963": {"name": "yob1963", "num_bytes": 271872, "num_examples": 12282, "dataset_name": "md_gender_bias"}, "yob1964": {"name": "yob1964", "num_bytes": 274590, "num_examples": 12397, "dataset_name": "md_gender_bias"}, "yob1965": {"name": "yob1965", "num_bytes": 264889, "num_examples": 11952, "dataset_name": "md_gender_bias"}, "yob1966": {"name": "yob1966", "num_bytes": 269321, "num_examples": 12151, "dataset_name": "md_gender_bias"}, "yob1967": {"name": "yob1967", "num_bytes": 274867, "num_examples": 12397, "dataset_name": "md_gender_bias"}, "yob1968": {"name": "yob1968", "num_bytes": 286774, "num_examples": 12936, "dataset_name": "md_gender_bias"}, "yob1969": {"name": "yob1969", "num_bytes": 304909, "num_examples": 13749, "dataset_name": "md_gender_bias"}, "yob1970": {"name": "yob1970", "num_bytes": 328047, "num_examples": 14779, "dataset_name": "md_gender_bias"}, "yob1971": {"name": "yob1971", "num_bytes": 339657, "num_examples": 15295, "dataset_name": "md_gender_bias"}, "yob1972": {"name": "yob1972", "num_bytes": 342321, "num_examples": 15412, "dataset_name": "md_gender_bias"}, "yob1973": {"name": "yob1973", "num_bytes": 348414, "num_examples": 15682, "dataset_name": "md_gender_bias"}, "yob1974": {"name": "yob1974", "num_bytes": 361188, "num_examples": 16249, "dataset_name": "md_gender_bias"}, "yob1975": {"name": "yob1975", "num_bytes": 376491, "num_examples": 16944, "dataset_name": "md_gender_bias"}, "yob1976": {"name": "yob1976", "num_bytes": 386565, "num_examples": 17391, "dataset_name": "md_gender_bias"}, "yob1977": {"name": "yob1977", "num_bytes": 403994, "num_examples": 18175, "dataset_name": "md_gender_bias"}, "yob1978": {"name": "yob1978", "num_bytes": 405430, "num_examples": 18231, "dataset_name": "md_gender_bias"}, "yob1979": {"name": "yob1979", "num_bytes": 423423, "num_examples": 19039, "dataset_name": "md_gender_bias"}, "yob1980": {"name": "yob1980", "num_bytes": 432317, "num_examples": 19452, "dataset_name": "md_gender_bias"}, "yob1981": {"name": "yob1981", "num_bytes": 432980, "num_examples": 19475, "dataset_name": "md_gender_bias"}, "yob1982": {"name": "yob1982", "num_bytes": 437986, "num_examples": 19694, "dataset_name": "md_gender_bias"}, "yob1983": {"name": "yob1983", "num_bytes": 431531, "num_examples": 19407, "dataset_name": "md_gender_bias"}, "yob1984": {"name": "yob1984", "num_bytes": 434085, "num_examples": 19506, "dataset_name": "md_gender_bias"}, "yob1985": {"name": "yob1985", "num_bytes": 447113, "num_examples": 20085, "dataset_name": "md_gender_bias"}, "yob1986": {"name": "yob1986", "num_bytes": 460315, "num_examples": 20657, "dataset_name": "md_gender_bias"}, "yob1987": {"name": "yob1987", "num_bytes": 477677, "num_examples": 21406, "dataset_name": "md_gender_bias"}, "yob1988": {"name": "yob1988", "num_bytes": 499347, "num_examples": 22367, "dataset_name": "md_gender_bias"}, "yob1989": {"name": "yob1989", "num_bytes": 531020, "num_examples": 23775, "dataset_name": "md_gender_bias"}, "yob1990": {"name": "yob1990", "num_bytes": 552114, "num_examples": 24716, "dataset_name": "md_gender_bias"}, "yob1991": {"name": "yob1991", "num_bytes": 560932, "num_examples": 25109, "dataset_name": "md_gender_bias"}, "yob1992": {"name": "yob1992", "num_bytes": 568151, "num_examples": 25427, "dataset_name": "md_gender_bias"}, "yob1993": {"name": "yob1993", "num_bytes": 579778, "num_examples": 25966, "dataset_name": "md_gender_bias"}, "yob1994": {"name": "yob1994", "num_bytes": 580223, "num_examples": 25997, "dataset_name": "md_gender_bias"}, "yob1995": {"name": "yob1995", "num_bytes": 581949, "num_examples": 26080, "dataset_name": "md_gender_bias"}, "yob1996": {"name": "yob1996", "num_bytes": 589131, "num_examples": 26423, "dataset_name": "md_gender_bias"}, "yob1997": {"name": "yob1997", "num_bytes": 601284, "num_examples": 26970, "dataset_name": "md_gender_bias"}, "yob1998": {"name": "yob1998", "num_bytes": 621587, "num_examples": 27902, "dataset_name": "md_gender_bias"}, "yob1999": {"name": "yob1999", "num_bytes": 635355, "num_examples": 28552, "dataset_name": "md_gender_bias"}, "yob2000": {"name": "yob2000", "num_bytes": 662398, "num_examples": 29772, "dataset_name": "md_gender_bias"}, "yob2001": {"name": "yob2001", "num_bytes": 673111, "num_examples": 30274, "dataset_name": "md_gender_bias"}, "yob2002": {"name": "yob2002", "num_bytes": 679392, "num_examples": 30564, "dataset_name": "md_gender_bias"}, "yob2003": {"name": "yob2003", "num_bytes": 692931, "num_examples": 31185, "dataset_name": "md_gender_bias"}, "yob2004": {"name": "yob2004", "num_bytes": 711776, "num_examples": 32048, "dataset_name": "md_gender_bias"}, "yob2005": {"name": "yob2005", "num_bytes": 723065, "num_examples": 32549, "dataset_name": "md_gender_bias"}, "yob2006": {"name": "yob2006", "num_bytes": 757620, "num_examples": 34088, "dataset_name": "md_gender_bias"}, "yob2007": {"name": "yob2007", "num_bytes": 776893, "num_examples": 34961, "dataset_name": "md_gender_bias"}, "yob2008": {"name": "yob2008", "num_bytes": 779403, "num_examples": 35079, "dataset_name": "md_gender_bias"}, "yob2009": {"name": "yob2009", "num_bytes": 771032, "num_examples": 34709, "dataset_name": "md_gender_bias"}, "yob2010": {"name": "yob2010", "num_bytes": 756717, "num_examples": 34073, "dataset_name": "md_gender_bias"}, "yob2011": {"name": "yob2011", "num_bytes": 752804, "num_examples": 33908, "dataset_name": "md_gender_bias"}, "yob2012": {"name": "yob2012", "num_bytes": 748915, "num_examples": 33747, "dataset_name": "md_gender_bias"}, "yob2013": {"name": "yob2013", "num_bytes": 738288, "num_examples": 33282, "dataset_name": "md_gender_bias"}, "yob2014": {"name": "yob2014", "num_bytes": 737219, "num_examples": 33243, "dataset_name": "md_gender_bias"}, "yob2015": {"name": "yob2015", "num_bytes": 734183, "num_examples": 33121, "dataset_name": "md_gender_bias"}, "yob2016": {"name": "yob2016", "num_bytes": 731291, "num_examples": 33010, "dataset_name": "md_gender_bias"}, "yob2017": {"name": "yob2017", "num_bytes": 721444, "num_examples": 32590, "dataset_name": "md_gender_bias"}, "yob2018": {"name": "yob2018", "num_bytes": 708657, "num_examples": 32033, "dataset_name": "md_gender_bias"}}, "download_checksums": {"http://parl.ai/downloads/md_gender/gend_multiclass_10072020.tgz": {"num_bytes": 232629010, "checksum": "c2c03257c53497b9e453600201fc7245b55dec1d98965093b4657fdb54822e9d"}}, "download_size": 232629010, "post_processing_size": null, "dataset_size": 43393095, "size_in_bytes": 276022105}, "new_data": {"description": "Machine learning models are trained to find patterns in data.\nNLP models can inadvertently learn socially undesirable patterns when training on gender biased text.\nIn this work, we propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions:\nbias from the gender of the person being spoken about, bias from the gender of the person being spoken to, and bias from the gender of the speaker.\nUsing this fine-grained framework, we automatically annotate eight large scale datasets with gender information.\nIn addition, we collect a novel, crowdsourced evaluation benchmark of utterance-level gender rewrites.\nDistinguishing between gender bias along multiple dimensions is important, as it enables us to train finer-grained gender bias classifiers.\nWe show our classifiers prove valuable for a variety of important applications, such as controlling for gender bias in generative models,\ndetecting gender bias in arbitrary text, and shed light on offensive language in terms of genderedness.\n", "citation": "@inproceedings{md_gender_bias,\n author = {Emily Dinan and\n Angela Fan and\n Ledell Wu and\n Jason Weston and\n Douwe Kiela and\n Adina Williams},\n editor = {Bonnie Webber and\n Trevor Cohn and\n Yulan He and\n Yang Liu},\n title = {Multi-Dimensional Gender Bias Classification},\n booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural\n Language Processing, {EMNLP} 2020, Online, November 16-20, 2020},\n pages = {314--331},\n publisher = {Association for Computational Linguistics},\n year = {2020},\n url = {https://www.aclweb.org/anthology/2020.emnlp-main.23/}\n}\n", "homepage": "https://parl.ai/projects/md_gender/", "license": "MIT License", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "original": {"dtype": "string", "id": null, "_type": "Value"}, "labels": [{"num_classes": 6, "names": ["ABOUT:female", "ABOUT:male", "PARTNER:female", "PARTNER:male", "SELF:female", "SELF:male"], "names_file": null, "id": null, "_type": "ClassLabel"}], "class_type": {"num_classes": 3, "names": ["about", "partner", "self"], "names_file": null, "id": null, "_type": "ClassLabel"}, "turker_gender": {"num_classes": 5, "names": ["man", "woman", "nonbinary", "prefer not to say", "no answer"], "names_file": null, "id": null, "_type": "ClassLabel"}, "episode_done": {"dtype": "bool_", "id": null, "_type": "Value"}, "confidence": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "md_gender_bias", "config_name": "new_data", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 369753, "num_examples": 2345, "dataset_name": "md_gender_bias"}}, "download_checksums": {"http://parl.ai/downloads/md_gender/gend_multiclass_10072020.tgz": {"num_bytes": 232629010, "checksum": "c2c03257c53497b9e453600201fc7245b55dec1d98965093b4657fdb54822e9d"}}, "download_size": 232629010, "post_processing_size": null, "dataset_size": 369753, "size_in_bytes": 232998763}, "funpedia": {"description": "Machine learning models are trained to find patterns in data.\nNLP models can inadvertently learn socially undesirable patterns when training on gender biased text.\nIn this work, we propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions:\nbias from the gender of the person being spoken about, bias from the gender of the person being spoken to, and bias from the gender of the speaker.\nUsing this fine-grained framework, we automatically annotate eight large scale datasets with gender information.\nIn addition, we collect a novel, crowdsourced evaluation benchmark of utterance-level gender rewrites.\nDistinguishing between gender bias along multiple dimensions is important, as it enables us to train finer-grained gender bias classifiers.\nWe show our classifiers prove valuable for a variety of important applications, such as controlling for gender bias in generative models,\ndetecting gender bias in arbitrary text, and shed light on offensive language in terms of genderedness.\n", "citation": "@inproceedings{md_gender_bias,\n author = {Emily Dinan and\n Angela Fan and\n Ledell Wu and\n Jason Weston and\n Douwe Kiela and\n Adina Williams},\n editor = {Bonnie Webber and\n Trevor Cohn and\n Yulan He and\n Yang Liu},\n title = {Multi-Dimensional Gender Bias Classification},\n booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural\n Language Processing, {EMNLP} 2020, Online, November 16-20, 2020},\n pages = {314--331},\n publisher = {Association for Computational Linguistics},\n year = {2020},\n url = {https://www.aclweb.org/anthology/2020.emnlp-main.23/}\n}\n", "homepage": "https://parl.ai/projects/md_gender/", "license": "MIT License", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "persona": {"dtype": "string", "id": null, "_type": "Value"}, "gender": {"num_classes": 3, "names": ["gender-neutral", "female", "male"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "md_gender_bias", "config_name": "funpedia", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 3225542, "num_examples": 23897, "dataset_name": "md_gender_bias"}, "validation": {"name": "validation", "num_bytes": 402205, "num_examples": 2984, "dataset_name": "md_gender_bias"}, "test": {"name": "test", "num_bytes": 396417, "num_examples": 2938, "dataset_name": "md_gender_bias"}}, "download_checksums": {"http://parl.ai/downloads/md_gender/gend_multiclass_10072020.tgz": {"num_bytes": 232629010, "checksum": "c2c03257c53497b9e453600201fc7245b55dec1d98965093b4657fdb54822e9d"}}, "download_size": 232629010, "post_processing_size": null, "dataset_size": 4024164, "size_in_bytes": 236653174}, "image_chat": {"description": "Machine learning models are trained to find patterns in data.\nNLP models can inadvertently learn socially undesirable patterns when training on gender biased text.\nIn this work, we propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions:\nbias from the gender of the person being spoken about, bias from the gender of the person being spoken to, and bias from the gender of the speaker.\nUsing this fine-grained framework, we automatically annotate eight large scale datasets with gender information.\nIn addition, we collect a novel, crowdsourced evaluation benchmark of utterance-level gender rewrites.\nDistinguishing between gender bias along multiple dimensions is important, as it enables us to train finer-grained gender bias classifiers.\nWe show our classifiers prove valuable for a variety of important applications, such as controlling for gender bias in generative models,\ndetecting gender bias in arbitrary text, and shed light on offensive language in terms of genderedness.\n", "citation": "@inproceedings{md_gender_bias,\n author = {Emily Dinan and\n Angela Fan and\n Ledell Wu and\n Jason Weston and\n Douwe Kiela and\n Adina Williams},\n editor = {Bonnie Webber and\n Trevor Cohn and\n Yulan He and\n Yang Liu},\n title = {Multi-Dimensional Gender Bias Classification},\n booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural\n Language Processing, {EMNLP} 2020, Online, November 16-20, 2020},\n pages = {314--331},\n publisher = {Association for Computational Linguistics},\n year = {2020},\n url = {https://www.aclweb.org/anthology/2020.emnlp-main.23/}\n}\n", "homepage": "https://parl.ai/projects/md_gender/", "license": "MIT License", "features": {"caption": {"dtype": "string", "id": null, "_type": "Value"}, "id": {"dtype": "string", "id": null, "_type": "Value"}, "male": {"dtype": "bool_", "id": null, "_type": "Value"}, "female": {"dtype": "bool_", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "md_gender_bias", "config_name": "image_chat", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1061285, "num_examples": 9997, "dataset_name": "md_gender_bias"}, "validation": {"name": "validation", "num_bytes": 35868670, "num_examples": 338180, "dataset_name": "md_gender_bias"}, "test": {"name": "test", "num_bytes": 530126, "num_examples": 5000, "dataset_name": "md_gender_bias"}}, "download_checksums": {"http://parl.ai/downloads/md_gender/gend_multiclass_10072020.tgz": {"num_bytes": 232629010, "checksum": "c2c03257c53497b9e453600201fc7245b55dec1d98965093b4657fdb54822e9d"}}, "download_size": 232629010, "post_processing_size": null, "dataset_size": 37460081, "size_in_bytes": 270089091}, "wizard": {"description": "Machine learning models are trained to find patterns in data.\nNLP models can inadvertently learn socially undesirable patterns when training on gender biased text.\nIn this work, we propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions:\nbias from the gender of the person being spoken about, bias from the gender of the person being spoken to, and bias from the gender of the speaker.\nUsing this fine-grained framework, we automatically annotate eight large scale datasets with gender information.\nIn addition, we collect a novel, crowdsourced evaluation benchmark of utterance-level gender rewrites.\nDistinguishing between gender bias along multiple dimensions is important, as it enables us to train finer-grained gender bias classifiers.\nWe show our classifiers prove valuable for a variety of important applications, such as controlling for gender bias in generative models,\ndetecting gender bias in arbitrary text, and shed light on offensive language in terms of genderedness.\n", "citation": "@inproceedings{md_gender_bias,\n author = {Emily Dinan and\n Angela Fan and\n Ledell Wu and\n Jason Weston and\n Douwe Kiela and\n Adina Williams},\n editor = {Bonnie Webber and\n Trevor Cohn and\n Yulan He and\n Yang Liu},\n title = {Multi-Dimensional Gender Bias Classification},\n booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural\n Language Processing, {EMNLP} 2020, Online, November 16-20, 2020},\n pages = {314--331},\n publisher = {Association for Computational Linguistics},\n year = {2020},\n url = {https://www.aclweb.org/anthology/2020.emnlp-main.23/}\n}\n", "homepage": "https://parl.ai/projects/md_gender/", "license": "MIT License", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "chosen_topic": {"dtype": "string", "id": null, "_type": "Value"}, "gender": {"num_classes": 3, "names": ["gender-neutral", "female", "male"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "md_gender_bias", "config_name": "wizard", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1158785, "num_examples": 10449, "dataset_name": "md_gender_bias"}, "validation": {"name": "validation", "num_bytes": 57824, "num_examples": 537, "dataset_name": "md_gender_bias"}, "test": {"name": "test", "num_bytes": 53126, "num_examples": 470, "dataset_name": "md_gender_bias"}}, "download_checksums": {"http://parl.ai/downloads/md_gender/gend_multiclass_10072020.tgz": {"num_bytes": 232629010, "checksum": "c2c03257c53497b9e453600201fc7245b55dec1d98965093b4657fdb54822e9d"}}, "download_size": 232629010, "post_processing_size": null, "dataset_size": 1269735, "size_in_bytes": 233898745}, "convai2_inferred": {"description": "Machine learning models are trained to find patterns in data.\nNLP models can inadvertently learn socially undesirable patterns when training on gender biased text.\nIn this work, we propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions:\nbias from the gender of the person being spoken about, bias from the gender of the person being spoken to, and bias from the gender of the speaker.\nUsing this fine-grained framework, we automatically annotate eight large scale datasets with gender information.\nIn addition, we collect a novel, crowdsourced evaluation benchmark of utterance-level gender rewrites.\nDistinguishing between gender bias along multiple dimensions is important, as it enables us to train finer-grained gender bias classifiers.\nWe show our classifiers prove valuable for a variety of important applications, such as controlling for gender bias in generative models,\ndetecting gender bias in arbitrary text, and shed light on offensive language in terms of genderedness.\n", "citation": "@inproceedings{md_gender_bias,\n author = {Emily Dinan and\n Angela Fan and\n Ledell Wu and\n Jason Weston and\n Douwe Kiela and\n Adina Williams},\n editor = {Bonnie Webber and\n Trevor Cohn and\n Yulan He and\n Yang Liu},\n title = {Multi-Dimensional Gender Bias Classification},\n booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural\n Language Processing, {EMNLP} 2020, Online, November 16-20, 2020},\n pages = {314--331},\n publisher = {Association for Computational Linguistics},\n year = {2020},\n url = {https://www.aclweb.org/anthology/2020.emnlp-main.23/}\n}\n", "homepage": "https://parl.ai/projects/md_gender/", "license": "MIT License", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "binary_label": {"num_classes": 2, "names": ["ABOUT:female", "ABOUT:male"], "names_file": null, "id": null, "_type": "ClassLabel"}, "binary_score": {"dtype": "float32", "id": null, "_type": "Value"}, "ternary_label": {"num_classes": 3, "names": ["ABOUT:female", "ABOUT:male", "ABOUT:gender-neutral"], "names_file": null, "id": null, "_type": "ClassLabel"}, "ternary_score": {"dtype": "float32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "md_gender_bias", "config_name": "convai2_inferred", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 9853669, "num_examples": 131438, "dataset_name": "md_gender_bias"}, "validation": {"name": "validation", "num_bytes": 608046, "num_examples": 7801, "dataset_name": "md_gender_bias"}, "test": {"name": "test", "num_bytes": 608046, "num_examples": 7801, "dataset_name": "md_gender_bias"}}, "download_checksums": {"http://parl.ai/downloads/md_gender/gend_multiclass_10072020.tgz": {"num_bytes": 232629010, "checksum": "c2c03257c53497b9e453600201fc7245b55dec1d98965093b4657fdb54822e9d"}}, "download_size": 232629010, "post_processing_size": null, "dataset_size": 11069761, "size_in_bytes": 243698771}, "light_inferred": {"description": "Machine learning models are trained to find patterns in data.\nNLP models can inadvertently learn socially undesirable patterns when training on gender biased text.\nIn this work, we propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions:\nbias from the gender of the person being spoken about, bias from the gender of the person being spoken to, and bias from the gender of the speaker.\nUsing this fine-grained framework, we automatically annotate eight large scale datasets with gender information.\nIn addition, we collect a novel, crowdsourced evaluation benchmark of utterance-level gender rewrites.\nDistinguishing between gender bias along multiple dimensions is important, as it enables us to train finer-grained gender bias classifiers.\nWe show our classifiers prove valuable for a variety of important applications, such as controlling for gender bias in generative models,\ndetecting gender bias in arbitrary text, and shed light on offensive language in terms of genderedness.\n", "citation": "@inproceedings{md_gender_bias,\n author = {Emily Dinan and\n Angela Fan and\n Ledell Wu and\n Jason Weston and\n Douwe Kiela and\n Adina Williams},\n editor = {Bonnie Webber and\n Trevor Cohn and\n Yulan He and\n Yang Liu},\n title = {Multi-Dimensional Gender Bias Classification},\n booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural\n Language Processing, {EMNLP} 2020, Online, November 16-20, 2020},\n pages = {314--331},\n publisher = {Association for Computational Linguistics},\n year = {2020},\n url = {https://www.aclweb.org/anthology/2020.emnlp-main.23/}\n}\n", "homepage": "https://parl.ai/projects/md_gender/", "license": "MIT License", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "binary_label": {"num_classes": 2, "names": ["ABOUT:female", "ABOUT:male"], "names_file": null, "id": null, "_type": "ClassLabel"}, "binary_score": {"dtype": "float32", "id": null, "_type": "Value"}, "ternary_label": {"num_classes": 3, "names": ["ABOUT:female", "ABOUT:male", "ABOUT:gender-neutral"], "names_file": null, "id": null, "_type": "ClassLabel"}, "ternary_score": {"dtype": "float32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "md_gender_bias", "config_name": "light_inferred", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 10931355, "num_examples": 106122, "dataset_name": "md_gender_bias"}, "validation": {"name": "validation", "num_bytes": 679692, "num_examples": 6362, "dataset_name": "md_gender_bias"}, "test": {"name": "test", "num_bytes": 1375745, "num_examples": 12765, "dataset_name": "md_gender_bias"}}, "download_checksums": {"http://parl.ai/downloads/md_gender/gend_multiclass_10072020.tgz": {"num_bytes": 232629010, "checksum": "c2c03257c53497b9e453600201fc7245b55dec1d98965093b4657fdb54822e9d"}}, "download_size": 232629010, "post_processing_size": null, "dataset_size": 12986792, "size_in_bytes": 245615802}, "opensubtitles_inferred": {"description": "Machine learning models are trained to find patterns in data.\nNLP models can inadvertently learn socially undesirable patterns when training on gender biased text.\nIn this work, we propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions:\nbias from the gender of the person being spoken about, bias from the gender of the person being spoken to, and bias from the gender of the speaker.\nUsing this fine-grained framework, we automatically annotate eight large scale datasets with gender information.\nIn addition, we collect a novel, crowdsourced evaluation benchmark of utterance-level gender rewrites.\nDistinguishing between gender bias along multiple dimensions is important, as it enables us to train finer-grained gender bias classifiers.\nWe show our classifiers prove valuable for a variety of important applications, such as controlling for gender bias in generative models,\ndetecting gender bias in arbitrary text, and shed light on offensive language in terms of genderedness.\n", "citation": "@inproceedings{md_gender_bias,\n author = {Emily Dinan and\n Angela Fan and\n Ledell Wu and\n Jason Weston and\n Douwe Kiela and\n Adina Williams},\n editor = {Bonnie Webber and\n Trevor Cohn and\n Yulan He and\n Yang Liu},\n title = {Multi-Dimensional Gender Bias Classification},\n booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural\n Language Processing, {EMNLP} 2020, Online, November 16-20, 2020},\n pages = {314--331},\n publisher = {Association for Computational Linguistics},\n year = {2020},\n url = {https://www.aclweb.org/anthology/2020.emnlp-main.23/}\n}\n", "homepage": "https://parl.ai/projects/md_gender/", "license": "MIT License", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "binary_label": {"num_classes": 2, "names": ["ABOUT:female", "ABOUT:male"], "names_file": null, "id": null, "_type": "ClassLabel"}, "binary_score": {"dtype": "float32", "id": null, "_type": "Value"}, "ternary_label": {"num_classes": 3, "names": ["ABOUT:female", "ABOUT:male", "ABOUT:gender-neutral"], "names_file": null, "id": null, "_type": "ClassLabel"}, "ternary_score": {"dtype": "float32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "md_gender_bias", "config_name": "opensubtitles_inferred", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 27966476, "num_examples": 351036, "dataset_name": "md_gender_bias"}, "validation": {"name": "validation", "num_bytes": 3363802, "num_examples": 41957, "dataset_name": "md_gender_bias"}, "test": {"name": "test", "num_bytes": 3830528, "num_examples": 49108, "dataset_name": "md_gender_bias"}}, "download_checksums": {"http://parl.ai/downloads/md_gender/gend_multiclass_10072020.tgz": {"num_bytes": 232629010, "checksum": "c2c03257c53497b9e453600201fc7245b55dec1d98965093b4657fdb54822e9d"}}, "download_size": 232629010, "post_processing_size": null, "dataset_size": 35160806, "size_in_bytes": 267789816}, "yelp_inferred": {"description": "Machine learning models are trained to find patterns in data.\nNLP models can inadvertently learn socially undesirable patterns when training on gender biased text.\nIn this work, we propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions:\nbias from the gender of the person being spoken about, bias from the gender of the person being spoken to, and bias from the gender of the speaker.\nUsing this fine-grained framework, we automatically annotate eight large scale datasets with gender information.\nIn addition, we collect a novel, crowdsourced evaluation benchmark of utterance-level gender rewrites.\nDistinguishing between gender bias along multiple dimensions is important, as it enables us to train finer-grained gender bias classifiers.\nWe show our classifiers prove valuable for a variety of important applications, such as controlling for gender bias in generative models,\ndetecting gender bias in arbitrary text, and shed light on offensive language in terms of genderedness.\n", "citation": "@inproceedings{md_gender_bias,\n author = {Emily Dinan and\n Angela Fan and\n Ledell Wu and\n Jason Weston and\n Douwe Kiela and\n Adina Williams},\n editor = {Bonnie Webber and\n Trevor Cohn and\n Yulan He and\n Yang Liu},\n title = {Multi-Dimensional Gender Bias Classification},\n booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural\n Language Processing, {EMNLP} 2020, Online, November 16-20, 2020},\n pages = {314--331},\n publisher = {Association for Computational Linguistics},\n year = {2020},\n url = {https://www.aclweb.org/anthology/2020.emnlp-main.23/}\n}\n", "homepage": "https://parl.ai/projects/md_gender/", "license": "MIT License", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "binary_label": {"num_classes": 2, "names": ["ABOUT:female", "ABOUT:male"], "names_file": null, "id": null, "_type": "ClassLabel"}, "binary_score": {"dtype": "float32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "md_gender_bias", "config_name": "yelp_inferred", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 260582945, "num_examples": 2577862, "dataset_name": "md_gender_bias"}, "validation": {"name": "validation", "num_bytes": 324349, "num_examples": 4492, "dataset_name": "md_gender_bias"}, "test": {"name": "test", "num_bytes": 53887700, "num_examples": 534460, "dataset_name": "md_gender_bias"}}, "download_checksums": {"http://parl.ai/downloads/md_gender/gend_multiclass_10072020.tgz": {"num_bytes": 232629010, "checksum": "c2c03257c53497b9e453600201fc7245b55dec1d98965093b4657fdb54822e9d"}}, "download_size": 232629010, "post_processing_size": null, "dataset_size": 314794994, "size_in_bytes": 547424004}}
|
dummy/convai2_inferred/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd5fe75c22d3ad2aa9be6f40c3048a67d950f7173d28484772b3bc4ffab379f1
|
3 |
+
size 21054
|
dummy/funpedia/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:588d083b3055694557ded3c576b14a9a21948ad2b45f5520a02046363493cfbb
|
3 |
+
size 21054
|
dummy/gendered_words/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c03c0e060bfacad4bc7ea29ca4d0087288042552f5345ece6415cfac819f836
|
3 |
+
size 21054
|
dummy/image_chat/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c85a5e125c11927219c6078230747be0ab4ed8283a3cc71a97b49debe3d872dc
|
3 |
+
size 21054
|
dummy/light_inferred/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6e587a526d23eb565a4f93a76ad7a0a877efb9c7a337ad99e31d942810d64693
|
3 |
+
size 21054
|
dummy/name_genders/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:31924a7d5477faf2db6945c9ea41e4ed03f90e6f543a94a56e718c884a0ce5ed
|
3 |
+
size 56490
|
dummy/new_data/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d7d76ecbe7368e6e1cafb960bcff9688b34495c36f2ead68e41542f69ee5f6b7
|
3 |
+
size 21054
|
dummy/opensubtitles_inferred/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4453ed97b5c1069a5d95f5089569c7ded6cd6222d1ae79826cc0d9958e58a54c
|
3 |
+
size 21054
|
dummy/wizard/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3bf7813fee98e70c908c3eca27b33081447ba09ae4b79e23949b118f16b2c4b9
|
3 |
+
size 21054
|
dummy/yelp_inferred/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ffa7355ecd8215f9e3d50f5cc7b63cac07bef916f04829bca4e131d97a7abc1
|
3 |
+
size 21054
|
md_gender_bias.py
ADDED
@@ -0,0 +1,410 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Multi-Dimensional Gender Bias classification"""
|
16 |
+
|
17 |
+
from __future__ import absolute_import, division, print_function
|
18 |
+
|
19 |
+
import json
|
20 |
+
import os
|
21 |
+
|
22 |
+
import datasets
|
23 |
+
|
24 |
+
|
25 |
+
# TODO: Add BibTeX citation
|
26 |
+
# Find for instance the citation on arxiv or on the dataset repo/website
|
27 |
+
_CITATION = """\
|
28 |
+
@inproceedings{md_gender_bias,
|
29 |
+
author = {Emily Dinan and
|
30 |
+
Angela Fan and
|
31 |
+
Ledell Wu and
|
32 |
+
Jason Weston and
|
33 |
+
Douwe Kiela and
|
34 |
+
Adina Williams},
|
35 |
+
editor = {Bonnie Webber and
|
36 |
+
Trevor Cohn and
|
37 |
+
Yulan He and
|
38 |
+
Yang Liu},
|
39 |
+
title = {Multi-Dimensional Gender Bias Classification},
|
40 |
+
booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural
|
41 |
+
Language Processing, {EMNLP} 2020, Online, November 16-20, 2020},
|
42 |
+
pages = {314--331},
|
43 |
+
publisher = {Association for Computational Linguistics},
|
44 |
+
year = {2020},
|
45 |
+
url = {https://www.aclweb.org/anthology/2020.emnlp-main.23/}
|
46 |
+
}
|
47 |
+
"""
|
48 |
+
|
49 |
+
# TODO: Add description of the dataset here
|
50 |
+
# You can copy an official description
|
51 |
+
_DESCRIPTION = """\
|
52 |
+
Machine learning models are trained to find patterns in data.
|
53 |
+
NLP models can inadvertently learn socially undesirable patterns when training on gender biased text.
|
54 |
+
In this work, we propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions:
|
55 |
+
bias from the gender of the person being spoken about, bias from the gender of the person being spoken to, and bias from the gender of the speaker.
|
56 |
+
Using this fine-grained framework, we automatically annotate eight large scale datasets with gender information.
|
57 |
+
In addition, we collect a novel, crowdsourced evaluation benchmark of utterance-level gender rewrites.
|
58 |
+
Distinguishing between gender bias along multiple dimensions is important, as it enables us to train finer-grained gender bias classifiers.
|
59 |
+
We show our classifiers prove valuable for a variety of important applications, such as controlling for gender bias in generative models,
|
60 |
+
detecting gender bias in arbitrary text, and shed light on offensive language in terms of genderedness.
|
61 |
+
"""
|
62 |
+
|
63 |
+
_HOMEPAGE = "https://parl.ai/projects/md_gender/"
|
64 |
+
|
65 |
+
_LICENSE = "MIT License"
|
66 |
+
|
67 |
+
_URL = "http://parl.ai/downloads/md_gender/gend_multiclass_10072020.tgz"
|
68 |
+
|
69 |
+
_CONF_FILES = {
|
70 |
+
"funpedia": {
|
71 |
+
"train": "funpedia/train.jsonl",
|
72 |
+
"validation": "funpedia/valid.jsonl",
|
73 |
+
"test": "funpedia/test.jsonl",
|
74 |
+
},
|
75 |
+
"image_chat": {
|
76 |
+
"train": "image_chat/engaging_imagechat_gender_captions_hashed.test.jsonl",
|
77 |
+
"validation": "image_chat/engaging_imagechat_gender_captions_hashed.train.jsonl",
|
78 |
+
"test": "image_chat/engaging_imagechat_gender_captions_hashed.valid.jsonl",
|
79 |
+
},
|
80 |
+
"wizard": {
|
81 |
+
"train": "wizard/train.jsonl",
|
82 |
+
"validation": "wizard/valid.jsonl",
|
83 |
+
"test": "wizard/test.jsonl",
|
84 |
+
},
|
85 |
+
"convai2_inferred": {
|
86 |
+
"train": (
|
87 |
+
"inferred_about/convai2_train_binary.txt",
|
88 |
+
"inferred_about/convai2_train.txt",
|
89 |
+
),
|
90 |
+
"validation": (
|
91 |
+
"inferred_about/convai2_valid_binary.txt",
|
92 |
+
"inferred_about/convai2_valid.txt",
|
93 |
+
),
|
94 |
+
"test": (
|
95 |
+
"inferred_about/convai2_test_binary.txt",
|
96 |
+
"inferred_about/convai2_test.txt",
|
97 |
+
),
|
98 |
+
},
|
99 |
+
"light_inferred": {
|
100 |
+
"train": (
|
101 |
+
"inferred_about/light_train_binary.txt",
|
102 |
+
"inferred_about/light_train.txt",
|
103 |
+
),
|
104 |
+
"validation": (
|
105 |
+
"inferred_about/light_valid_binary.txt",
|
106 |
+
"inferred_about/light_valid.txt",
|
107 |
+
),
|
108 |
+
"test": (
|
109 |
+
"inferred_about/light_test_binary.txt",
|
110 |
+
"inferred_about/light_test.txt",
|
111 |
+
),
|
112 |
+
},
|
113 |
+
"opensubtitles_inferred": {
|
114 |
+
"train": (
|
115 |
+
"inferred_about/opensubtitles_train_binary.txt",
|
116 |
+
"inferred_about/opensubtitles_train.txt",
|
117 |
+
),
|
118 |
+
"validation": (
|
119 |
+
"inferred_about/opensubtitles_valid_binary.txt",
|
120 |
+
"inferred_about/opensubtitles_valid.txt",
|
121 |
+
),
|
122 |
+
"test": (
|
123 |
+
"inferred_about/opensubtitles_test_binary.txt",
|
124 |
+
"inferred_about/opensubtitles_test.txt",
|
125 |
+
),
|
126 |
+
},
|
127 |
+
"yelp_inferred": {
|
128 |
+
"train": (
|
129 |
+
"inferred_about/yelp_train_binary.txt",
|
130 |
+
"",
|
131 |
+
),
|
132 |
+
"validation": (
|
133 |
+
"inferred_about/yelp_valid_binary.txt",
|
134 |
+
"",
|
135 |
+
),
|
136 |
+
"test": (
|
137 |
+
"inferred_about/yelp_test_binary.txt",
|
138 |
+
"",
|
139 |
+
),
|
140 |
+
},
|
141 |
+
}
|
142 |
+
|
143 |
+
|
144 |
+
class MdGenderBias(datasets.GeneratorBasedBuilder):
|
145 |
+
"""Multi-Dimensional Gender Bias classification"""
|
146 |
+
|
147 |
+
VERSION = datasets.Version("1.0.0")
|
148 |
+
|
149 |
+
BUILDER_CONFIGS = [
|
150 |
+
datasets.BuilderConfig(
|
151 |
+
name="gendered_words",
|
152 |
+
version=VERSION,
|
153 |
+
description="A list of common nouns with a masculine and feminine variant.",
|
154 |
+
),
|
155 |
+
datasets.BuilderConfig(
|
156 |
+
name="name_genders",
|
157 |
+
version=VERSION,
|
158 |
+
description="A list of first names with their gender attribution by year in the US.",
|
159 |
+
),
|
160 |
+
datasets.BuilderConfig(
|
161 |
+
name="new_data", version=VERSION, description="Some data reformulated and annotated along all three axes."
|
162 |
+
),
|
163 |
+
datasets.BuilderConfig(
|
164 |
+
name="funpedia",
|
165 |
+
version=VERSION,
|
166 |
+
description="Data from Funpedia with ABOUT annotations based on Funpedia information on an entity's gender.",
|
167 |
+
),
|
168 |
+
datasets.BuilderConfig(
|
169 |
+
name="image_chat",
|
170 |
+
version=VERSION,
|
171 |
+
description="Data from ImageChat with ABOUT annotations based on image recognition.",
|
172 |
+
),
|
173 |
+
datasets.BuilderConfig(
|
174 |
+
name="wizard",
|
175 |
+
version=VERSION,
|
176 |
+
description="Data from WizardsOfWikipedia with ABOUT annotations based on Wikipedia information on an entity's gender.",
|
177 |
+
),
|
178 |
+
datasets.BuilderConfig(
|
179 |
+
name="convai2_inferred",
|
180 |
+
version=VERSION,
|
181 |
+
description="Data from the ConvAI2 challenge with ABOUT annotations inferred by a trined classifier.",
|
182 |
+
),
|
183 |
+
datasets.BuilderConfig(
|
184 |
+
name="light_inferred",
|
185 |
+
version=VERSION,
|
186 |
+
description="Data from LIGHT with ABOUT annotations inferred by a trined classifier.",
|
187 |
+
),
|
188 |
+
datasets.BuilderConfig(
|
189 |
+
name="opensubtitles_inferred",
|
190 |
+
version=VERSION,
|
191 |
+
description="Data from OpenSubtitles with ABOUT annotations inferred by a trined classifier.",
|
192 |
+
),
|
193 |
+
datasets.BuilderConfig(
|
194 |
+
name="yelp_inferred",
|
195 |
+
version=VERSION,
|
196 |
+
description="Data from Yelp reviews with ABOUT annotations inferred by a trined classifier.",
|
197 |
+
),
|
198 |
+
]
|
199 |
+
|
200 |
+
DEFAULT_CONFIG_NAME = (
|
201 |
+
"new_data" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
202 |
+
)
|
203 |
+
|
204 |
+
def _info(self):
|
205 |
+
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
|
206 |
+
if (
|
207 |
+
self.config.name == "gendered_words"
|
208 |
+
): # This is the name of the configuration selected in BUILDER_CONFIGS above
|
209 |
+
features = datasets.Features(
|
210 |
+
{
|
211 |
+
"word_masculine": datasets.Value("string"),
|
212 |
+
"word_feminine": datasets.Value("string"),
|
213 |
+
}
|
214 |
+
)
|
215 |
+
elif self.config.name == "name_genders":
|
216 |
+
features = datasets.Features(
|
217 |
+
{
|
218 |
+
"name": datasets.Value("string"),
|
219 |
+
"assigned_gender": datasets.ClassLabel(names=["M", "F"]),
|
220 |
+
"count": datasets.Value("int32"),
|
221 |
+
}
|
222 |
+
)
|
223 |
+
elif self.config.name == "new_data":
|
224 |
+
features = datasets.Features(
|
225 |
+
{
|
226 |
+
"text": datasets.Value("string"),
|
227 |
+
"original": datasets.Value("string"),
|
228 |
+
"labels": [
|
229 |
+
datasets.ClassLabel(
|
230 |
+
names=[
|
231 |
+
"ABOUT:female",
|
232 |
+
"ABOUT:male",
|
233 |
+
"PARTNER:female",
|
234 |
+
"PARTNER:male",
|
235 |
+
"SELF:female",
|
236 |
+
"SELF:male",
|
237 |
+
]
|
238 |
+
)
|
239 |
+
],
|
240 |
+
"class_type": datasets.ClassLabel(names=["about", "partner", "self"]),
|
241 |
+
"turker_gender": datasets.ClassLabel(
|
242 |
+
names=["man", "woman", "nonbinary", "prefer not to say", "no answer"]
|
243 |
+
),
|
244 |
+
"episode_done": datasets.Value("bool_"),
|
245 |
+
"confidence": datasets.Value("string"),
|
246 |
+
}
|
247 |
+
)
|
248 |
+
elif self.config.name == "funpedia":
|
249 |
+
features = datasets.Features(
|
250 |
+
{
|
251 |
+
"text": datasets.Value("string"),
|
252 |
+
"title": datasets.Value("string"),
|
253 |
+
"persona": datasets.Value("string"),
|
254 |
+
"gender": datasets.ClassLabel(names=["gender-neutral", "female", "male"]),
|
255 |
+
}
|
256 |
+
)
|
257 |
+
elif self.config.name == "image_chat":
|
258 |
+
features = datasets.Features(
|
259 |
+
{
|
260 |
+
"caption": datasets.Value("string"),
|
261 |
+
"id": datasets.Value("string"),
|
262 |
+
"male": datasets.Value("bool_"),
|
263 |
+
"female": datasets.Value("bool_"),
|
264 |
+
}
|
265 |
+
)
|
266 |
+
elif self.config.name == "wizard":
|
267 |
+
features = datasets.Features(
|
268 |
+
{
|
269 |
+
"text": datasets.Value("string"),
|
270 |
+
"chosen_topic": datasets.Value("string"),
|
271 |
+
"gender": datasets.ClassLabel(names=["gender-neutral", "female", "male"]),
|
272 |
+
}
|
273 |
+
)
|
274 |
+
elif self.config.name == "yelp_inferred":
|
275 |
+
features = datasets.Features(
|
276 |
+
{
|
277 |
+
"text": datasets.Value("string"),
|
278 |
+
"binary_label": datasets.ClassLabel(names=["ABOUT:female", "ABOUT:male"]),
|
279 |
+
"binary_score": datasets.Value("float"),
|
280 |
+
}
|
281 |
+
)
|
282 |
+
else: # data with inferred labels
|
283 |
+
features = datasets.Features(
|
284 |
+
{
|
285 |
+
"text": datasets.Value("string"),
|
286 |
+
"binary_label": datasets.ClassLabel(names=["ABOUT:female", "ABOUT:male"]),
|
287 |
+
"binary_score": datasets.Value("float"),
|
288 |
+
"ternary_label": datasets.ClassLabel(names=["ABOUT:female", "ABOUT:male", "ABOUT:gender-neutral"]),
|
289 |
+
"ternary_score": datasets.Value("float"),
|
290 |
+
}
|
291 |
+
)
|
292 |
+
return datasets.DatasetInfo(
|
293 |
+
description=_DESCRIPTION,
|
294 |
+
features=features, # Here we define them above because they are different between the two configurations
|
295 |
+
supervised_keys=None,
|
296 |
+
homepage=_HOMEPAGE,
|
297 |
+
license=_LICENSE,
|
298 |
+
citation=_CITATION,
|
299 |
+
)
|
300 |
+
|
301 |
+
def _split_generators(self, dl_manager):
|
302 |
+
"""Returns SplitGenerators."""
|
303 |
+
data_dir = os.path.join(dl_manager.download_and_extract(_URL), "data_to_release")
|
304 |
+
if self.config.name == "gendered_words":
|
305 |
+
return [
|
306 |
+
datasets.SplitGenerator(
|
307 |
+
name=datasets.Split.TRAIN,
|
308 |
+
gen_kwargs={
|
309 |
+
"filepath": None,
|
310 |
+
"filepath_pair": (
|
311 |
+
os.path.join(data_dir, "word_list/male_word_file.txt"),
|
312 |
+
os.path.join(data_dir, "word_list/female_word_file.txt"),
|
313 |
+
),
|
314 |
+
},
|
315 |
+
)
|
316 |
+
]
|
317 |
+
elif self.config.name == "name_genders":
|
318 |
+
return [
|
319 |
+
datasets.SplitGenerator(
|
320 |
+
name=f"yob{yob}",
|
321 |
+
gen_kwargs={
|
322 |
+
"filepath": os.path.join(data_dir, f"names/yob{yob}.txt"),
|
323 |
+
"filepath_pair": None,
|
324 |
+
},
|
325 |
+
)
|
326 |
+
for yob in range(1880, 2019)
|
327 |
+
]
|
328 |
+
elif self.config.name == "new_data":
|
329 |
+
return [
|
330 |
+
datasets.SplitGenerator(
|
331 |
+
name=datasets.Split.TRAIN,
|
332 |
+
gen_kwargs={
|
333 |
+
"filepath": os.path.join(data_dir, "new_data/data.jsonl"),
|
334 |
+
"filepath_pair": None,
|
335 |
+
},
|
336 |
+
)
|
337 |
+
]
|
338 |
+
elif self.config.name in ["funpedia", "image_chat", "wizard"]:
|
339 |
+
return [
|
340 |
+
datasets.SplitGenerator(
|
341 |
+
name=spl,
|
342 |
+
gen_kwargs={
|
343 |
+
"filepath": os.path.join(data_dir, fname),
|
344 |
+
"filepath_pair": None,
|
345 |
+
},
|
346 |
+
)
|
347 |
+
for spl, fname in _CONF_FILES[self.config.name].items()
|
348 |
+
]
|
349 |
+
else:
|
350 |
+
return [
|
351 |
+
datasets.SplitGenerator(
|
352 |
+
name=spl,
|
353 |
+
gen_kwargs={
|
354 |
+
"filepath": None,
|
355 |
+
"filepath_pair": (
|
356 |
+
os.path.join(data_dir, fname_1),
|
357 |
+
os.path.join(data_dir, fname_2),
|
358 |
+
),
|
359 |
+
},
|
360 |
+
)
|
361 |
+
for spl, (fname_1, fname_2) in _CONF_FILES[self.config.name].items()
|
362 |
+
]
|
363 |
+
|
364 |
+
def _generate_examples(self, filepath, filepath_pair):
|
365 |
+
if self.config.name == "gendered_words":
|
366 |
+
with open(filepath_pair[0], encoding="utf-8") as f_m:
|
367 |
+
with open(filepath_pair[1], encoding="utf-8") as f_f:
|
368 |
+
for id_, (l_m, l_f) in enumerate(zip(f_m, f_f)):
|
369 |
+
yield id_, {
|
370 |
+
"word_masculine": l_m.strip(),
|
371 |
+
"word_feminine": l_f.strip(),
|
372 |
+
}
|
373 |
+
elif self.config.name == "name_genders":
|
374 |
+
with open(filepath, encoding="utf-8") as f:
|
375 |
+
for id_, line in enumerate(f):
|
376 |
+
name, g, ct = line.strip().split(",")
|
377 |
+
yield id_, {
|
378 |
+
"name": name,
|
379 |
+
"assigned_gender": g,
|
380 |
+
"count": int(ct),
|
381 |
+
}
|
382 |
+
elif "_inferred" in self.config.name:
|
383 |
+
with open(filepath_pair[0], encoding="utf-8") as f_b:
|
384 |
+
if "yelp" in self.config.name:
|
385 |
+
for id_, line_b in enumerate(f_b):
|
386 |
+
text_b, label_b, score_b = line_b.split("\t")
|
387 |
+
yield id_, {
|
388 |
+
"text": text_b,
|
389 |
+
"binary_label": label_b,
|
390 |
+
"binary_score": float(score_b.strip()),
|
391 |
+
}
|
392 |
+
else:
|
393 |
+
with open(filepath_pair[1], encoding="utf-8") as f_t:
|
394 |
+
for id_, (line_b, line_t) in enumerate(zip(f_b, f_t)):
|
395 |
+
text_b, label_b, score_b = line_b.split("\t")
|
396 |
+
text_t, label_t, score_t = line_t.split("\t")
|
397 |
+
yield id_, {
|
398 |
+
"text": text_b,
|
399 |
+
"binary_label": label_b,
|
400 |
+
"binary_score": float(score_b.strip()),
|
401 |
+
"ternary_label": label_t,
|
402 |
+
"ternary_score": float(score_t.strip()),
|
403 |
+
}
|
404 |
+
else:
|
405 |
+
with open(filepath, encoding="utf-8") as f:
|
406 |
+
for id_, line in enumerate(f):
|
407 |
+
example = json.loads(line.strip())
|
408 |
+
if "turker_gender" in example and example["turker_gender"] is None:
|
409 |
+
example["turker_gender"] = "no answer"
|
410 |
+
yield id_, example
|