albertvillanova HF staff commited on
Commit
7e2dd65
1 Parent(s): 3c4ed3a

Delete legacy JSON metadata (#1)

Browse files

- Delete legacy JSON metadata (514bd89ffbc5ff79d63fa49f12c332382c685b7a)

Files changed (1) hide show
  1. dataset_infos.json +0 -1
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"trex": {"description": "LAMA is a dataset used to probe and analyze the factual and commonsense knowledge contained in pretrained language models. See https://github.com/facebookresearch/LAMA.\n", "citation": "@inproceedings{petroni2019language,\n title={Language Models as Knowledge Bases?},\n author={F. Petroni, T. Rockt{\"{a}}schel, A. H. Miller, P. Lewis, A. Bakhtin, Y. Wu and S. Riedel},\n booktitle={In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2019},\n year={2019}\n}\n@inproceedings{petroni2020how,\n title={How Context Affects Language Models' Factual Predictions},\n author={Fabio Petroni and Patrick Lewis and Aleksandra Piktus and Tim Rockt{\"a}schel and Yuxiang Wu and Alexander H. Miller and Sebastian Riedel},\n booktitle={Automated Knowledge Base Construction},\n year={2020},\n url={https://openreview.net/forum?id=025X0zPfn}\n}\n", "homepage": "https://github.com/facebookresearch/LAMA", "license": "The Creative Commons Attribution-Noncommercial 4.0 International License. see https://github.com/facebookresearch/LAMA/blob/master/LICENSE", "features": {"uuid": {"dtype": "string", "id": null, "_type": "Value"}, "obj_uri": {"dtype": "string", "id": null, "_type": "Value"}, "obj_label": {"dtype": "string", "id": null, "_type": "Value"}, "sub_uri": {"dtype": "string", "id": null, "_type": "Value"}, "sub_label": {"dtype": "string", "id": null, "_type": "Value"}, "predicate_id": {"dtype": "string", "id": null, "_type": "Value"}, "sub_surface": {"dtype": "string", "id": null, "_type": "Value"}, "obj_surface": {"dtype": "string", "id": null, "_type": "Value"}, "masked_sentence": {"dtype": "string", "id": null, "_type": "Value"}, "template": {"dtype": "string", "id": null, "_type": "Value"}, "template_negated": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "string", "id": null, "_type": "Value"}, "description": {"dtype": "string", "id": null, "_type": "Value"}, "type": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "lama", "config_name": "trex", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 656913189, "num_examples": 1304391, "dataset_name": "lama"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/LAMA/negated_data.tar.gz": {"num_bytes": 74639115, "checksum": "1a151058e6608e47983ea4c99c50bb69248c1c0763a04a3793b0a0b657aa0b61"}, "https://s3.amazonaws.com/datasets.huggingface.co/lama/relations.jsonl": {"num_bytes": 13086, "checksum": "154be499a67d5a681bdeaff3bce578a64064c6ce73e471523c6423071e3e5298"}}, "download_size": 74652201, "post_processing_size": null, "dataset_size": 656913189, "size_in_bytes": 731565390}, "squad": {"description": "LAMA is a dataset used to probe and analyze the factual and commonsense knowledge contained in pretrained language models. See https://github.com/facebookresearch/LAMA.\n", "citation": "@inproceedings{petroni2019language,\n title={Language Models as Knowledge Bases?},\n author={F. Petroni, T. Rockt{\"{a}}schel, A. H. Miller, P. Lewis, A. Bakhtin, Y. Wu and S. Riedel},\n booktitle={In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2019},\n year={2019}\n}\n@inproceedings{petroni2020how,\n title={How Context Affects Language Models' Factual Predictions},\n author={Fabio Petroni and Patrick Lewis and Aleksandra Piktus and Tim Rockt{\"a}schel and Yuxiang Wu and Alexander H. Miller and Sebastian Riedel},\n booktitle={Automated Knowledge Base Construction},\n year={2020},\n url={https://openreview.net/forum?id=025X0zPfn}\n}\n", "homepage": "https://github.com/facebookresearch/LAMA", "license": "The Creative Commons Attribution-Noncommercial 4.0 International License. see https://github.com/facebookresearch/LAMA/blob/master/LICENSE", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "sub_label": {"dtype": "string", "id": null, "_type": "Value"}, "obj_label": {"dtype": "string", "id": null, "_type": "Value"}, "negated": {"dtype": "string", "id": null, "_type": "Value"}, "masked_sentence": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "lama", "config_name": "squad", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 57188, "num_examples": 305, "dataset_name": "lama"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/LAMA/negated_data.tar.gz": {"num_bytes": 74639115, "checksum": "1a151058e6608e47983ea4c99c50bb69248c1c0763a04a3793b0a0b657aa0b61"}}, "download_size": 74639115, "post_processing_size": null, "dataset_size": 57188, "size_in_bytes": 74696303}, "google_re": {"description": "LAMA is a dataset used to probe and analyze the factual and commonsense knowledge contained in pretrained language models. See https://github.com/facebookresearch/LAMA.\n", "citation": "@inproceedings{petroni2019language,\n title={Language Models as Knowledge Bases?},\n author={F. Petroni, T. Rockt{\"{a}}schel, A. H. Miller, P. Lewis, A. Bakhtin, Y. Wu and S. Riedel},\n booktitle={In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2019},\n year={2019}\n}\n@inproceedings{petroni2020how,\n title={How Context Affects Language Models' Factual Predictions},\n author={Fabio Petroni and Patrick Lewis and Aleksandra Piktus and Tim Rockt{\"a}schel and Yuxiang Wu and Alexander H. Miller and Sebastian Riedel},\n booktitle={Automated Knowledge Base Construction},\n year={2020},\n url={https://openreview.net/forum?id=025X0zPfn}\n}\n", "homepage": "https://github.com/facebookresearch/LAMA", "license": "The Creative Commons Attribution-Noncommercial 4.0 International License. see https://github.com/facebookresearch/LAMA/blob/master/LICENSE", "features": {"pred": {"dtype": "string", "id": null, "_type": "Value"}, "sub": {"dtype": "string", "id": null, "_type": "Value"}, "obj": {"dtype": "string", "id": null, "_type": "Value"}, "evidences": {"dtype": "string", "id": null, "_type": "Value"}, "judgments": {"dtype": "string", "id": null, "_type": "Value"}, "sub_w": {"dtype": "string", "id": null, "_type": "Value"}, "sub_label": {"dtype": "string", "id": null, "_type": "Value"}, "sub_aliases": {"dtype": "string", "id": null, "_type": "Value"}, "obj_w": {"dtype": "string", "id": null, "_type": "Value"}, "obj_label": {"dtype": "string", "id": null, "_type": "Value"}, "obj_aliases": {"dtype": "string", "id": null, "_type": "Value"}, "uuid": {"dtype": "string", "id": null, "_type": "Value"}, "masked_sentence": {"dtype": "string", "id": null, "_type": "Value"}, "template": {"dtype": "string", "id": null, "_type": "Value"}, "template_negated": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "lama", "config_name": "google_re", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 7638657, "num_examples": 6106, "dataset_name": "lama"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/LAMA/negated_data.tar.gz": {"num_bytes": 74639115, "checksum": "1a151058e6608e47983ea4c99c50bb69248c1c0763a04a3793b0a0b657aa0b61"}}, "download_size": 74639115, "post_processing_size": null, "dataset_size": 7638657, "size_in_bytes": 82277772}, "conceptnet": {"description": "LAMA is a dataset used to probe and analyze the factual and commonsense knowledge contained in pretrained language models. See https://github.com/facebookresearch/LAMA.\n", "citation": "@inproceedings{petroni2019language,\n title={Language Models as Knowledge Bases?},\n author={F. Petroni, T. Rockt{\"{a}}schel, A. H. Miller, P. Lewis, A. Bakhtin, Y. Wu and S. Riedel},\n booktitle={In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2019},\n year={2019}\n}\n@inproceedings{petroni2020how,\n title={How Context Affects Language Models' Factual Predictions},\n author={Fabio Petroni and Patrick Lewis and Aleksandra Piktus and Tim Rockt{\"a}schel and Yuxiang Wu and Alexander H. Miller and Sebastian Riedel},\n booktitle={Automated Knowledge Base Construction},\n year={2020},\n url={https://openreview.net/forum?id=025X0zPfn}\n}\n", "homepage": "https://github.com/facebookresearch/LAMA", "license": "The Creative Commons Attribution-Noncommercial 4.0 International License. see https://github.com/facebookresearch/LAMA/blob/master/LICENSE", "features": {"uuid": {"dtype": "string", "id": null, "_type": "Value"}, "sub": {"dtype": "string", "id": null, "_type": "Value"}, "obj": {"dtype": "string", "id": null, "_type": "Value"}, "pred": {"dtype": "string", "id": null, "_type": "Value"}, "obj_label": {"dtype": "string", "id": null, "_type": "Value"}, "masked_sentence": {"dtype": "string", "id": null, "_type": "Value"}, "negated": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "lama", "config_name": "conceptnet", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 4130000, "num_examples": 29774, "dataset_name": "lama"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/LAMA/negated_data.tar.gz": {"num_bytes": 74639115, "checksum": "1a151058e6608e47983ea4c99c50bb69248c1c0763a04a3793b0a0b657aa0b61"}}, "download_size": 74639115, "post_processing_size": null, "dataset_size": 4130000, "size_in_bytes": 78769115}}