Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
anli / dataset_infos.json
system's picture
system HF staff
Update files from the datasets library (from 1.0.0)
50e78e1
raw
history blame
2.76 kB
{"plain_text": {"description": "The Adversarial Natural Language Inference (ANLI) is a new large-scale NLI benchmark dataset, \nThe dataset is collected via an iterative, adversarial human-and-model-in-the-loop procedure.\nANLI is much more difficult than its predecessors including SNLI and MNLI.\nIt contains three rounds. Each round has train/dev/test splits.\n", "citation": "@InProceedings{nie2019adversarial,\n title={Adversarial NLI: A New Benchmark for Natural Language Understanding},\n author={Nie, Yixin \n and Williams, Adina \n and Dinan, Emily \n and Bansal, Mohit \n and Weston, Jason \n and Kiela, Douwe},\n booktitle = \"Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics\",\n year = \"2020\",\n publisher = \"Association for Computational Linguistics\",\n}\n", "homepage": "https://github.com/facebookresearch/anli/", "license": "", "features": {"uid": {"dtype": "string", "id": null, "_type": "Value"}, "premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}, "reason": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "anli", "config_name": "plain_text", "version": {"version_str": "0.1.0", "description": "", "datasets_version_to_prepare": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train_r1": {"name": "train_r1", "num_bytes": 8006920, "num_examples": 16946, "dataset_name": "anli"}, "dev_r1": {"name": "dev_r1", "num_bytes": 573444, "num_examples": 1000, "dataset_name": "anli"}, "test_r1": {"name": "test_r1", "num_bytes": 574933, "num_examples": 1000, "dataset_name": "anli"}, "train_r2": {"name": "train_r2", "num_bytes": 20801661, "num_examples": 45460, "dataset_name": "anli"}, "dev_r2": {"name": "dev_r2", "num_bytes": 556082, "num_examples": 1000, "dataset_name": "anli"}, "test_r2": {"name": "test_r2", "num_bytes": 572655, "num_examples": 1000, "dataset_name": "anli"}, "train_r3": {"name": "train_r3", "num_bytes": 44720895, "num_examples": 100459, "dataset_name": "anli"}, "dev_r3": {"name": "dev_r3", "num_bytes": 663164, "num_examples": 1200, "dataset_name": "anli"}, "test_r3": {"name": "test_r3", "num_bytes": 657602, "num_examples": 1200, "dataset_name": "anli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/anli/anli_v0.1.zip": {"num_bytes": 18621352, "checksum": "16ac929a7e90ecf9093deaec89cc81fe86a379265a5320a150028efe50c5cde8"}}, "download_size": 18621352, "dataset_size": 77127356, "size_in_bytes": 95748708}}