remove abc dependency
Browse files- demo/P3LIB/formula_picker.py +546 -549
demo/P3LIB/formula_picker.py
CHANGED
@@ -1,549 +1,546 @@
|
|
1 |
-
import pandas as pd
|
2 |
-
import pickle
|
3 |
-
from typing import List, Dict, Optional
|
4 |
-
from copy import copy as cp
|
5 |
-
import json
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
self.
|
22 |
-
|
23 |
-
|
24 |
-
self.
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
return (
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
if ingrs
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
self.ingrs
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
if herbs
|
136 |
-
herbs
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
self.herbs
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
self.
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
new_db
|
177 |
-
|
178 |
-
|
179 |
-
new_db
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
entrez_to_symb
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
cid
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
self.ingrs
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
herb_cids =
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
for
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
if
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
for
|
331 |
-
|
332 |
-
self.herbs.
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
if
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
for
|
357 |
-
|
358 |
-
self.formulas.
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
for
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
db =
|
401 |
-
|
402 |
-
|
403 |
-
db.
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
for
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
self.
|
476 |
-
self.
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
raise NotImplementedError()
|
500 |
-
|
501 |
-
def
|
502 |
-
raise NotImplementedError()
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
db
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
main(ab_initio=True, p_BATMAN="./BATMAN/", fname='BATMAN_DB.json')
|
548 |
-
|
549 |
-
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import pickle
|
3 |
+
from typing import List, Dict, Optional
|
4 |
+
from copy import copy as cp
|
5 |
+
import json
|
6 |
+
|
7 |
+
class TCMEntity():
|
8 |
+
empty_override = True
|
9 |
+
desc = ''
|
10 |
+
cid = -1
|
11 |
+
entity = 'superclass'
|
12 |
+
|
13 |
+
def __init__(self,
|
14 |
+
pref_name: str, desc: str = '',
|
15 |
+
synonyms: Optional[List[str]] = None,
|
16 |
+
**kwargs):
|
17 |
+
self.pref_name = pref_name
|
18 |
+
self.desc = desc
|
19 |
+
self.synonyms = [] if synonyms is None else [x for x in synonyms if str(x).strip() != 'NA']
|
20 |
+
|
21 |
+
self.targets = {"known": dict(), "predicted": dict()}
|
22 |
+
|
23 |
+
self.formulas = []
|
24 |
+
self.herbs = []
|
25 |
+
self.ingrs = []
|
26 |
+
|
27 |
+
for k, v in kwargs.items():
|
28 |
+
self.__dict__[k] = v
|
29 |
+
|
30 |
+
def serialize(self):
|
31 |
+
init_dict = dict(
|
32 |
+
cid=self.cid,
|
33 |
+
targets_known=self.targets['known'],
|
34 |
+
targets_pred=self.targets['predicted'],
|
35 |
+
pref_name=self.pref_name, desc=self.desc,
|
36 |
+
synonyms=cp(self.synonyms),
|
37 |
+
entity=self.entity
|
38 |
+
)
|
39 |
+
link_dict = self._get_link_dict()
|
40 |
+
out_dict = {"init": init_dict, "links": link_dict}
|
41 |
+
return out_dict
|
42 |
+
|
43 |
+
@classmethod
|
44 |
+
def load(cls,
|
45 |
+
db: 'TCMDB', ser_dict: dict,
|
46 |
+
skip_links = True):
|
47 |
+
init_args = ser_dict['init']
|
48 |
+
|
49 |
+
if skip_links:
|
50 |
+
init_args.update({"empty_override":True})
|
51 |
+
else:
|
52 |
+
init_args.update({"empty_override": False})
|
53 |
+
|
54 |
+
new_entity = cls(**init_args)
|
55 |
+
if not skip_links:
|
56 |
+
links = ser_dict['links']
|
57 |
+
new_entity._set_links(db, links)
|
58 |
+
return (new_entity)
|
59 |
+
|
60 |
+
def _get_link_dict(self):
|
61 |
+
return dict(
|
62 |
+
ingrs=[x.cid for x in self.ingrs],
|
63 |
+
herbs=[x.pref_name for x in self.herbs],
|
64 |
+
formulas=[x.pref_name for x in self.formulas]
|
65 |
+
)
|
66 |
+
|
67 |
+
def _set_links(self, db: 'TCMDB', links: dict):
|
68 |
+
for ent_type in links:
|
69 |
+
self.__dict__[ent_type] = [db.__dict__[ent_type].get(x) for x in links[ent_type]]
|
70 |
+
self.__dict__[ent_type] = [x for x in self.__dict__[ent_type] if x is not None]
|
71 |
+
|
72 |
+
|
73 |
+
class Ingredient(TCMEntity):
|
74 |
+
entity: str = 'ingredient'
|
75 |
+
|
76 |
+
def __init__(self, cid: int,
|
77 |
+
targets_pred: Optional[Dict] = None,
|
78 |
+
targets_known: Optional[Dict] = None,
|
79 |
+
synonyms: Optional[List[str]] = None,
|
80 |
+
pref_name: str = '', desc: str = '',
|
81 |
+
empty_override: bool = True, **kwargs):
|
82 |
+
|
83 |
+
if not empty_override:
|
84 |
+
assert targets_known is not None or targets_pred is not None, \
|
85 |
+
f"Cant submit a compound with no targets at all (CID:{cid})"
|
86 |
+
|
87 |
+
super().__init__(pref_name, synonyms, desc, **kwargs)
|
88 |
+
|
89 |
+
self.cid = cid
|
90 |
+
self.targets = {
|
91 |
+
'known': targets_known if targets_known is not None else {"symbols": [], 'entrez_ids': []},
|
92 |
+
'predicted': targets_pred if targets_pred is not None else {"symbols": [], 'entrez_ids': []}
|
93 |
+
}
|
94 |
+
|
95 |
+
|
96 |
+
class Herb(TCMEntity):
|
97 |
+
entity: str = 'herb'
|
98 |
+
|
99 |
+
def __init__(self, pref_name: str,
|
100 |
+
ingrs: Optional[List[Ingredient]] = None,
|
101 |
+
synonyms: Optional[List[str]] = None,
|
102 |
+
desc: str = '',
|
103 |
+
empty_override: bool = True, **kwargs):
|
104 |
+
|
105 |
+
if ingrs is None:
|
106 |
+
ingrs = []
|
107 |
+
|
108 |
+
if not ingrs and not empty_override:
|
109 |
+
raise ValueError(f"No ingredients provided for {pref_name}")
|
110 |
+
|
111 |
+
super().__init__(pref_name, synonyms, desc, **kwargs)
|
112 |
+
|
113 |
+
self.ingrs = ingrs
|
114 |
+
|
115 |
+
def is_same(self, other: 'Herb') -> bool:
|
116 |
+
if len(self.ingrs) != len(other.ingrs):
|
117 |
+
return False
|
118 |
+
this_ingrs = set(x.cid for x in self.ingrs)
|
119 |
+
other_ingrs = set(x.cid for x in other.ingrs)
|
120 |
+
return this_ingrs == other_ingrs
|
121 |
+
|
122 |
+
|
123 |
+
class Formula(TCMEntity):
|
124 |
+
entity: str = 'formula'
|
125 |
+
|
126 |
+
def __init__(self, pref_name: str,
|
127 |
+
herbs: Optional[List[Herb]] = None,
|
128 |
+
synonyms: Optional[List[str]] = None,
|
129 |
+
desc: str = '',
|
130 |
+
empty_override: bool = False, **kwargs):
|
131 |
+
|
132 |
+
if herbs is None:
|
133 |
+
herbs = []
|
134 |
+
|
135 |
+
if not herbs and not empty_override:
|
136 |
+
raise ValueError(f"No herbs provided for {pref_name}")
|
137 |
+
|
138 |
+
super().__init__(pref_name, synonyms, desc, **kwargs)
|
139 |
+
self.herbs = herbs
|
140 |
+
|
141 |
+
def is_same(self, other: 'Formula') -> bool:
|
142 |
+
if len(self.herbs) != len(other.herbs):
|
143 |
+
return False
|
144 |
+
this_herbs = set(x.pref_name for x in self.herbs)
|
145 |
+
other_herbs = set(x.pref_name for x in other.herbs)
|
146 |
+
return this_herbs == other_herbs
|
147 |
+
|
148 |
+
|
149 |
+
class TCMDB:
|
150 |
+
hf_repo: str = "f-galkin/batman2"
|
151 |
+
hf_subsets: Dict[str, str] = {'formulas': 'batman_formulas',
|
152 |
+
'herbs': 'batman_herbs',
|
153 |
+
'ingredients': 'batman_ingredients'}
|
154 |
+
|
155 |
+
def __init__(self, p_batman: str):
|
156 |
+
p_batman = p_batman.removesuffix("/") + "/"
|
157 |
+
|
158 |
+
self.batman_files = dict(p_formulas='formula_browse.txt',
|
159 |
+
p_herbs='herb_browse.txt',
|
160 |
+
p_pred_by_tg='predicted_browse_by_targets.txt',
|
161 |
+
p_known_by_tg='known_browse_by_targets.txt',
|
162 |
+
p_pred_by_ingr='predicted_browse_by_ingredinets.txt',
|
163 |
+
p_known_by_ingr='known_browse_by_ingredients.txt')
|
164 |
+
|
165 |
+
self.batman_files = {x: p_batman + y for x, y in self.batman_files.items()}
|
166 |
+
|
167 |
+
self.ingrs = None
|
168 |
+
self.herbs = None
|
169 |
+
self.formulas = None
|
170 |
+
|
171 |
+
@classmethod
|
172 |
+
def make_new_db(cls, p_batman: str):
|
173 |
+
new_db = cls(p_batman)
|
174 |
+
|
175 |
+
new_db.parse_ingredients()
|
176 |
+
new_db.parse_herbs()
|
177 |
+
new_db.parse_formulas()
|
178 |
+
|
179 |
+
return (new_db)
|
180 |
+
|
181 |
+
def parse_ingredients(self):
|
182 |
+
|
183 |
+
pred_tgs = pd.read_csv(self.batman_files['p_pred_by_tg'],
|
184 |
+
sep='\t', index_col=None, header=0,
|
185 |
+
na_filter=False)
|
186 |
+
known_tgs = pd.read_csv(self.batman_files['p_known_by_tg'],
|
187 |
+
sep='\t', index_col=None, header=0,
|
188 |
+
na_filter=False)
|
189 |
+
entrez_to_symb = {int(pred_tgs.loc[x, 'entrez_gene_id']): pred_tgs.loc[x, 'entrez_gene_symbol'] for x in
|
190 |
+
pred_tgs.index}
|
191 |
+
# 9927 gene targets
|
192 |
+
entrez_to_symb.update({int(known_tgs.loc[x, 'entrez_gene_id']): \
|
193 |
+
known_tgs.loc[x, 'entrez_gene_symbol'] for x in known_tgs.index})
|
194 |
+
|
195 |
+
known_ingreds = pd.read_csv(self.batman_files['p_known_by_ingr'],
|
196 |
+
index_col=0, header=0, sep='\t',
|
197 |
+
na_filter=False)
|
198 |
+
# this BATMAN table is badly formatted
|
199 |
+
# you cant just read it
|
200 |
+
# df_pred = pd.read_csv(p_pred, index_col=0, header=0, sep='\t')
|
201 |
+
pred_ingreds = dict()
|
202 |
+
with open(self.batman_files['p_pred_by_ingr'], 'r') as f:
|
203 |
+
# skip header
|
204 |
+
f.readline()
|
205 |
+
newline = f.readline()
|
206 |
+
while newline != '':
|
207 |
+
cid, other_line = newline.split(' ', 1)
|
208 |
+
name, entrez_ids = other_line.rsplit(' ', 1)
|
209 |
+
entrez_ids = [int(x.split("(")[0]) for x in entrez_ids.split("|") if not x == "\n"]
|
210 |
+
pred_ingreds[int(cid)] = {"targets": entrez_ids, 'name': name}
|
211 |
+
newline = f.readline()
|
212 |
+
|
213 |
+
all_BATMAN_CIDs = list(set(pred_ingreds.keys()) | set(known_ingreds.index))
|
214 |
+
all_BATMAN_CIDs = [int(x) for x in all_BATMAN_CIDs if str(x).strip() != 'NA']
|
215 |
+
|
216 |
+
# get targets for selected cpds
|
217 |
+
ingredients = dict()
|
218 |
+
for cid in all_BATMAN_CIDs:
|
219 |
+
known_name, pred_name, synonyms = None, None, []
|
220 |
+
if cid in known_ingreds.index:
|
221 |
+
known_name = known_ingreds.loc[cid, 'IUPAC_name']
|
222 |
+
known_symbs = known_ingreds.loc[cid, 'known_target_proteins'].split("|")
|
223 |
+
else:
|
224 |
+
known_symbs = []
|
225 |
+
|
226 |
+
pred_ids = pred_ingreds.get(cid, [])
|
227 |
+
if pred_ids:
|
228 |
+
pred_name = pred_ids.get('name')
|
229 |
+
if known_name is None:
|
230 |
+
cpd_name = pred_name
|
231 |
+
elif known_name != pred_name:
|
232 |
+
cpd_name = min([known_name, pred_name], key=lambda x: sum([x.count(y) for y in "'()-[]1234567890"]))
|
233 |
+
synonyms = [x for x in [known_name, pred_name] if x != cpd_name]
|
234 |
+
|
235 |
+
pred_ids = pred_ids.get('targets', [])
|
236 |
+
|
237 |
+
ingredients[cid] = dict(pref_name=cpd_name,
|
238 |
+
synonyms=synonyms,
|
239 |
+
targets_known={"symbols": known_symbs,
|
240 |
+
"entrez_ids": [int(x) for x, y in entrez_to_symb.items() if
|
241 |
+
y in known_symbs]},
|
242 |
+
targets_pred={"symbols": [entrez_to_symb.get(x) for x in pred_ids],
|
243 |
+
"entrez_ids": pred_ids})
|
244 |
+
ingredients_objs = {x: Ingredient(cid=x, **y) for x, y in ingredients.items()}
|
245 |
+
self.ingrs = ingredients_objs
|
246 |
+
|
247 |
+
def parse_herbs(self):
|
248 |
+
if self.ingrs is None:
|
249 |
+
raise ValueError("Herbs cannot be added before the ingredients")
|
250 |
+
# load the herbs file
|
251 |
+
name_cols = ['Pinyin.Name', 'Chinese.Name', 'English.Name', 'Latin.Name']
|
252 |
+
herbs_df = pd.read_csv(self.batman_files['p_herbs'],
|
253 |
+
index_col=None, header=0, sep='\t',
|
254 |
+
na_filter=False)
|
255 |
+
for i in herbs_df.index:
|
256 |
+
|
257 |
+
herb_name = herbs_df.loc[i, 'Pinyin.Name'].strip()
|
258 |
+
if herb_name == 'NA':
|
259 |
+
herb_name = [x.strip() for x in herbs_df.loc[i, name_cols].tolist() if not x == 'NA']
|
260 |
+
herb_name = [x for x in herb_name if x != '']
|
261 |
+
if not herb_name:
|
262 |
+
raise ValueError(f"LINE {i}: provided a herb with no names")
|
263 |
+
else:
|
264 |
+
herb_name = herb_name[-1]
|
265 |
+
|
266 |
+
herb_cids = herbs_df.loc[i, 'Ingredients'].split("|")
|
267 |
+
|
268 |
+
herb_cids = [x.split("(")[-1].removesuffix(")").strip() for x in herb_cids]
|
269 |
+
herb_cids = [int(x) for x in herb_cids if x.isnumeric()]
|
270 |
+
|
271 |
+
missed_ingrs = [x for x in herb_cids if self.ingrs.get(x) is None]
|
272 |
+
for cid in missed_ingrs:
|
273 |
+
self.add_ingredient(cid=int(cid), pref_name='',
|
274 |
+
empty_override=True)
|
275 |
+
herb_ingrs = [self.ingrs[int(x)] for x in herb_cids]
|
276 |
+
|
277 |
+
self.add_herb(pref_name=herb_name,
|
278 |
+
ingrs=herb_ingrs,
|
279 |
+
synonyms=[x for x in herbs_df.loc[i, name_cols].tolist() if not x == "NA"],
|
280 |
+
empty_override=True)
|
281 |
+
|
282 |
+
def parse_formulas(self):
|
283 |
+
if self.herbs is None:
|
284 |
+
raise ValueError("Formulas cannot be added before the herbs")
|
285 |
+
formulas_df = pd.read_csv(self.batman_files['p_formulas'], index_col=None, header=0,
|
286 |
+
sep='\t', na_filter=False)
|
287 |
+
for i in formulas_df.index:
|
288 |
+
|
289 |
+
composition = formulas_df.loc[i, 'Pinyin.composition'].split(",")
|
290 |
+
composition = [x.strip() for x in composition if not x.strip() == 'NA']
|
291 |
+
if not composition:
|
292 |
+
continue
|
293 |
+
|
294 |
+
missed_herbs = [x.strip() for x in composition if self.herbs.get(x) is None]
|
295 |
+
for herb in missed_herbs:
|
296 |
+
self.add_herb(pref_name=herb,
|
297 |
+
desc='Missing in the original herb catalog, but present among formula components',
|
298 |
+
ingrs=[], empty_override=True)
|
299 |
+
|
300 |
+
formula_herbs = [self.herbs[x] for x in composition]
|
301 |
+
self.add_formula(pref_name=formulas_df.loc[i, 'Pinyin.Name'].strip(),
|
302 |
+
synonyms=[formulas_df.loc[i, 'Chinese.Name']],
|
303 |
+
herbs=formula_herbs)
|
304 |
+
|
305 |
+
def add_ingredient(self, **kwargs):
|
306 |
+
if self.ingrs is None:
|
307 |
+
self.ingrs = dict()
|
308 |
+
|
309 |
+
new_ingr = Ingredient(**kwargs)
|
310 |
+
if not new_ingr.cid in self.ingrs:
|
311 |
+
self.ingrs.update({new_ingr.cid: new_ingr})
|
312 |
+
|
313 |
+
def add_herb(self, **kwargs):
|
314 |
+
if self.herbs is None:
|
315 |
+
self.herbs = dict()
|
316 |
+
|
317 |
+
new_herb = Herb(**kwargs)
|
318 |
+
old_herb = self.herbs.get(new_herb.pref_name)
|
319 |
+
if not old_herb is None:
|
320 |
+
if_same = new_herb.is_same(old_herb)
|
321 |
+
if if_same:
|
322 |
+
return
|
323 |
+
|
324 |
+
same_name = new_herb.pref_name
|
325 |
+
all_dupes = [self.herbs[x] for x in self.herbs if x.split('~')[0] == same_name] + [new_herb]
|
326 |
+
new_names = [same_name + f"~{x + 1}" for x in range(len(all_dupes))]
|
327 |
+
for i, duped in enumerate(all_dupes):
|
328 |
+
duped.pref_name = new_names[i]
|
329 |
+
self.herbs.pop(same_name)
|
330 |
+
self.herbs.update({x.pref_name: x for x in all_dupes})
|
331 |
+
else:
|
332 |
+
self.herbs.update({new_herb.pref_name: new_herb})
|
333 |
+
|
334 |
+
for cpd in new_herb.ingrs:
|
335 |
+
cpd_herbs = [x.pref_name for x in cpd.herbs]
|
336 |
+
if not new_herb.pref_name in cpd_herbs:
|
337 |
+
cpd.herbs.append(new_herb)
|
338 |
+
|
339 |
+
def add_formula(self, **kwargs):
|
340 |
+
|
341 |
+
if self.formulas is None:
|
342 |
+
self.formulas = dict()
|
343 |
+
|
344 |
+
new_formula = Formula(**kwargs)
|
345 |
+
old_formula = self.formulas.get(new_formula.pref_name)
|
346 |
+
if not old_formula is None:
|
347 |
+
is_same = new_formula.is_same(old_formula)
|
348 |
+
if is_same:
|
349 |
+
return
|
350 |
+
same_name = new_formula.pref_name
|
351 |
+
all_dupes = [self.formulas[x] for x in self.formulas if x.split('~')[0] == same_name] + [new_formula]
|
352 |
+
new_names = [same_name + f"~{x + 1}" for x in range(len(all_dupes))]
|
353 |
+
for i, duped in enumerate(all_dupes):
|
354 |
+
duped.pref_name = new_names[i]
|
355 |
+
self.formulas.pop(same_name)
|
356 |
+
self.formulas.update({x.pref_name: x for x in all_dupes})
|
357 |
+
else:
|
358 |
+
self.formulas.update({new_formula.pref_name: new_formula})
|
359 |
+
|
360 |
+
for herb in new_formula.herbs:
|
361 |
+
herb_formulas = [x.pref_name for x in herb.formulas]
|
362 |
+
if not new_formula.pref_name in herb_formulas:
|
363 |
+
herb.formulas.append(new_formula)
|
364 |
+
|
365 |
+
def link_ingredients_n_formulas(self):
|
366 |
+
for h in self.herbs.values():
|
367 |
+
for i in h.ingrs:
|
368 |
+
fla_names = set(x.pref_name for x in i.formulas)
|
369 |
+
i.formulas += [x for x in h.formulas if not x.pref_name in fla_names]
|
370 |
+
for f in h.formulas:
|
371 |
+
ingr_cids = set(x.cid for x in f.ingrs)
|
372 |
+
f.ingrs += [x for x in h.ingrs if not x.cid in ingr_cids]
|
373 |
+
|
374 |
+
def serialize(self):
|
375 |
+
out_dict = dict(
|
376 |
+
ingredients={cid: ingr.serialize() for cid, ingr in self.ingrs.items()},
|
377 |
+
herbs={name: herb.serialize() for name, herb in self.herbs.items()},
|
378 |
+
formulas={name: formula.serialize() for name, formula in self.formulas.items()}
|
379 |
+
)
|
380 |
+
return (out_dict)
|
381 |
+
|
382 |
+
def save_to_flat_json(self, p_out: str):
|
383 |
+
ser_db = db.serialize()
|
384 |
+
flat_db = dict()
|
385 |
+
for ent_type in ser_db:
|
386 |
+
for i, obj in ser_db[ent_type].items():
|
387 |
+
flat_db[f"{ent_type}:{i}"] = obj
|
388 |
+
with open(p_out, "w") as f:
|
389 |
+
f.write(json.dumps(flat_db))
|
390 |
+
|
391 |
+
def save_to_json(self, p_out: str):
|
392 |
+
with open(p_out, "w") as f:
|
393 |
+
json.dump(self.serialize(), f)
|
394 |
+
|
395 |
+
@classmethod
|
396 |
+
def load(cls, ser_dict: dict):
|
397 |
+
db = cls(p_batman="")
|
398 |
+
|
399 |
+
# make sure to create all entities before you link them together
|
400 |
+
db.ingrs = {int(cid): Ingredient.load(db, ingr, skip_links=True) for cid, ingr in
|
401 |
+
ser_dict['ingredients'].items()}
|
402 |
+
db.herbs = {name: Herb.load(db, herb, skip_links=True) for name, herb in ser_dict['herbs'].items()}
|
403 |
+
db.formulas = {name: Formula.load(db, formula, skip_links=True) for name, formula in
|
404 |
+
ser_dict['formulas'].items()}
|
405 |
+
|
406 |
+
# now set the links
|
407 |
+
for i in db.ingrs.values():
|
408 |
+
# NB: somehow gotta make it work w/out relying on str-int conversion
|
409 |
+
i._set_links(db, ser_dict['ingredients'][str(i.cid)]['links'])
|
410 |
+
for h in db.herbs.values():
|
411 |
+
h._set_links(db, ser_dict['herbs'][h.pref_name]['links'])
|
412 |
+
for f in db.formulas.values():
|
413 |
+
f._set_links(db, ser_dict['formulas'][f.pref_name]['links'])
|
414 |
+
return (db)
|
415 |
+
|
416 |
+
@classmethod
|
417 |
+
def read_from_json(cls, p_file: str):
|
418 |
+
with open(p_file, "r") as f:
|
419 |
+
json_db = json.load(f)
|
420 |
+
db = cls.load(json_db)
|
421 |
+
return (db)
|
422 |
+
|
423 |
+
@classmethod
|
424 |
+
def download_from_hf(cls):
|
425 |
+
from datasets import load_dataset
|
426 |
+
dsets = {x: load_dataset(cls.hf_repo, y) for x, y in cls.hf_subsets.items()}
|
427 |
+
|
428 |
+
# speed this up somehow
|
429 |
+
|
430 |
+
known_tgs = {str(x['cid']): [y.split("(") for y in eval(x['targets_known'])] for x in dsets['ingredients']['train']}
|
431 |
+
known_tgs = {x:{'symbols':[z[0] for z in y], "entrez_ids":[int(z[1].strip(")")) for z in y]} for x,y in known_tgs.items()}
|
432 |
+
pred_tgs = {str(x['cid']): [y.split("(") for y in eval(x['targets_pred'])] for x in dsets['ingredients']['train']}
|
433 |
+
pred_tgs = {x:{'symbols':[z[0] for z in y], "entrez_ids":[int(z[1].strip(")")) for z in y]} for x,y in pred_tgs.items()}
|
434 |
+
|
435 |
+
json_db = dict()
|
436 |
+
json_db['ingredients'] = {str(x['cid']): {'init': dict(cid=int(x['cid']),
|
437 |
+
targets_known=known_tgs[str(x['cid'])],
|
438 |
+
targets_pred=pred_tgs[str(x['cid'])],
|
439 |
+
pref_name=x['pref_name'],
|
440 |
+
synonyms=eval(x['synonyms']),
|
441 |
+
desc=x['description']
|
442 |
+
),
|
443 |
+
|
444 |
+
'links': dict(
|
445 |
+
herbs=eval(x['herbs']),
|
446 |
+
formulas=eval(x['formulas'])
|
447 |
+
)
|
448 |
+
}
|
449 |
+
for x in dsets['ingredients']['train']}
|
450 |
+
|
451 |
+
json_db['herbs'] = {x['pref_name']: {'init': dict(pref_name=x['pref_name'],
|
452 |
+
synonyms=eval(x['synonyms']),
|
453 |
+
desc=x['description']),
|
454 |
+
'links': dict(ingrs=eval(x['ingredients']),
|
455 |
+
formulas=eval(x['formulas']))} for x in
|
456 |
+
dsets['herbs']['train']}
|
457 |
+
|
458 |
+
json_db['formulas'] = {x['pref_name']: {'init': dict(pref_name=x['pref_name'],
|
459 |
+
synonyms=eval(x['synonyms']),
|
460 |
+
desc=x['description']),
|
461 |
+
'links': dict(ingrs=eval(x['ingredients']),
|
462 |
+
herbs=eval(x['herbs']))} for x in
|
463 |
+
dsets['formulas']['train']}
|
464 |
+
|
465 |
+
db = cls.load(json_db)
|
466 |
+
return (db)
|
467 |
+
|
468 |
+
def drop_isolated(self, how='any'):
|
469 |
+
match how:
|
470 |
+
case 'any':
|
471 |
+
self.herbs = {x: y for x, y in self.herbs.items() if (y.ingrs and y.formulas)}
|
472 |
+
self.formulas = {x: y for x, y in self.formulas.items() if (y.ingrs and y.herbs)}
|
473 |
+
self.ingrs = {x: y for x, y in self.ingrs.items() if (y.formulas and y.herbs)}
|
474 |
+
case 'all':
|
475 |
+
self.herbs = {x: y for x, y in self.herbs.items() if (y.ingrs or y.formulas)}
|
476 |
+
self.formulas = {x: y for x, y in self.formulas.items() if (y.ingrs or y.herbs)}
|
477 |
+
self.ingrs = {x: y for x, y in self.ingrs.items() if (y.formulas or y.herbs)}
|
478 |
+
case _:
|
479 |
+
raise ValueError(f'Unknown how parameter: {how}. Known parameters are "any" and "all"')
|
480 |
+
|
481 |
+
def select_formula_by_cpd(self, cids: List):
|
482 |
+
cids = set(x for x in cids if x in self.ingrs)
|
483 |
+
if not cids:
|
484 |
+
return
|
485 |
+
cpd_counts = {x: len(set([z.cid for z in y.ingrs]) & cids) for x, y in self.formulas.items()}
|
486 |
+
n_max = max(cpd_counts.values())
|
487 |
+
if n_max == 0:
|
488 |
+
return (n_max, [])
|
489 |
+
selected = [x for x, y in cpd_counts.items() if y == n_max]
|
490 |
+
return (n_max, selected)
|
491 |
+
|
492 |
+
def pick_formula_by_cpd(self, cids: List):
|
493 |
+
cids = [x for x in cids if x in self.ingrs]
|
494 |
+
if not cids:
|
495 |
+
return
|
496 |
+
raise NotImplementedError()
|
497 |
+
|
498 |
+
def select_formula_by_herb(self, herbs: List):
|
499 |
+
raise NotImplementedError()
|
500 |
+
|
501 |
+
def pick_formula_by_herb(self, herbs: List):
|
502 |
+
raise NotImplementedError()
|
503 |
+
|
504 |
+
|
505 |
+
def main(ab_initio=False,
|
506 |
+
p_BATMAN="./BATMAN/",
|
507 |
+
fname='BATMAN_DB.json'):
|
508 |
+
p_BATMAN = p_BATMAN.removesuffix("/") + "/"
|
509 |
+
# Use in case you want to recreate the TCMDB database of Chinese medicine from BATMAN files
|
510 |
+
if ab_initio:
|
511 |
+
db = TCMDB.make_new_db(p_BATMAN)
|
512 |
+
db.link_ingredients_n_formulas()
|
513 |
+
db.save_to_json(p_BATMAN + fname)
|
514 |
+
# db.save_to_json('../TCM screening/BATMAN_DB.json')
|
515 |
+
|
516 |
+
else:
|
517 |
+
db = TCMDB.read_from_json('../TCM screening/BATMAN_DB.json')
|
518 |
+
# db = TCMDB.read_from_json(p_BATMAN + fname)
|
519 |
+
|
520 |
+
cids = [969516, # curcumin
|
521 |
+
445154, # resveratrol
|
522 |
+
5280343, # quercetin
|
523 |
+
6167, # colchicine
|
524 |
+
5280443, # apigening
|
525 |
+
65064, # EGCG3
|
526 |
+
5757, # estradiol
|
527 |
+
5994, # progesterone
|
528 |
+
5280863, # kaempferol
|
529 |
+
107985, # triptolide
|
530 |
+
14985, # alpha-tocopherol
|
531 |
+
1548943, # Capsaicin
|
532 |
+
64982, # Baicalin
|
533 |
+
6013, # Testosterone
|
534 |
+
]
|
535 |
+
|
536 |
+
p3_formula = db.select_formula_by_cpd(cids)
|
537 |
+
# somehow save file if needed ↓
|
538 |
+
ser_db = db.serialize()
|
539 |
+
|
540 |
+
|
541 |
+
###
|
542 |
+
|
543 |
+
if __name__ == '__main__':
|
544 |
+
main(ab_initio=True, p_BATMAN="./BATMAN/", fname='BATMAN_DB.json')
|
545 |
+
|
546 |
+
|
|
|
|
|
|