mathemakitten commited on
Commit
8035aad
1 Parent(s): 4613457
.idea/.gitignore ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ # Default ignored files
2
+ /shelf/
3
+ /workspace.xml
4
+ # Editor-based HTTP Client requests
5
+ /httpRequests/
6
+ # Datasource local storage ignored files
7
+ /dataSources/
8
+ /dataSources.local.xml
.idea/glue-ci.iml ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0" encoding="UTF-8"?>
2
+ <module type="PYTHON_MODULE" version="4">
3
+ <component name="NewModuleRootManager">
4
+ <content url="file://$MODULE_DIR$" />
5
+ <orderEntry type="inheritedJdk" />
6
+ <orderEntry type="sourceFolder" forTests="false" />
7
+ </component>
8
+ <component name="PyDocumentationSettings">
9
+ <option name="format" value="PLAIN" />
10
+ <option name="myDocStringFormat" value="Plain" />
11
+ </component>
12
+ </module>
.idea/inspectionProfiles/profiles_settings.xml ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ <component name="InspectionProjectProfileManager">
2
+ <settings>
3
+ <option name="USE_PROJECT_PROFILE" value="false" />
4
+ <version value="1.0" />
5
+ </settings>
6
+ </component>
.idea/misc.xml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ <?xml version="1.0" encoding="UTF-8"?>
2
+ <project version="4">
3
+ <component name="ProjectRootManager" version="2" project-jdk-name="Python 3.8" project-jdk-type="Python SDK" />
4
+ </project>
.idea/modules.xml ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0" encoding="UTF-8"?>
2
+ <project version="4">
3
+ <component name="ProjectModuleManager">
4
+ <modules>
5
+ <module fileurl="file://$PROJECT_DIR$/.idea/glue-ci.iml" filepath="$PROJECT_DIR$/.idea/glue-ci.iml" />
6
+ </modules>
7
+ </component>
8
+ </project>
.idea/vcs.xml ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ <?xml version="1.0" encoding="UTF-8"?>
2
+ <project version="4">
3
+ <component name="VcsDirectoryMappings">
4
+ <mapping directory="$PROJECT_DIR$" vcs="Git" />
5
+ </component>
6
+ </project>
README.md ADDED
@@ -0,0 +1,612 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - other
4
+ language_creators:
5
+ - other
6
+ language:
7
+ - en
8
+ license:
9
+ - cc-by-4.0
10
+ multilinguality:
11
+ - monolingual
12
+ size_categories:
13
+ - 10K<n<100K
14
+ source_datasets:
15
+ - original
16
+ task_categories:
17
+ - text-classification
18
+ task_ids:
19
+ - acceptability-classification
20
+ - natural-language-inference
21
+ - semantic-similarity-scoring
22
+ - sentiment-classification
23
+ - text-classification-other-coreference-nli
24
+ - text-classification-other-paraphrase-identification
25
+ - text-classification-other-qa-nli
26
+ - text-scoring
27
+ paperswithcode_id: glue
28
+ pretty_name: GLUE (General Language Understanding Evaluation benchmark)
29
+ train-eval-index:
30
+ - config: cola
31
+ task: text-classification
32
+ task_id: binary_classification
33
+ splits:
34
+ train_split: train
35
+ eval_split: validation
36
+ col_mapping:
37
+ sentence: text
38
+ label: target
39
+ - config: sst2
40
+ task: text-classification
41
+ task_id: binary_classification
42
+ splits:
43
+ train_split: train
44
+ eval_split: validation
45
+ col_mapping:
46
+ sentence: text
47
+ label: target
48
+ - config: mrpc
49
+ task: text-classification
50
+ task_id: natural_language_inference
51
+ splits:
52
+ train_split: train
53
+ eval_split: validation
54
+ col_mapping:
55
+ sentence1: text1
56
+ sentence2: text2
57
+ label: target
58
+ - config: qqp
59
+ task: text-classification
60
+ task_id: natural_language_inference
61
+ splits:
62
+ train_split: train
63
+ eval_split: validation
64
+ col_mapping:
65
+ question1: text1
66
+ question2: text2
67
+ label: target
68
+ - config: stsb
69
+ task: text-classification
70
+ task_id: natural_language_inference
71
+ splits:
72
+ train_split: train
73
+ eval_split: validation
74
+ col_mapping:
75
+ sentence1: text1
76
+ sentence2: text2
77
+ label: target
78
+ - config: mnli
79
+ task: text-classification
80
+ task_id: natural_language_inference
81
+ splits:
82
+ train_split: train
83
+ eval_split: validation_matched
84
+ col_mapping:
85
+ premise: text1
86
+ hypothesis: text2
87
+ label: target
88
+ - config: mnli_mismatched
89
+ task: text-classification
90
+ task_id: natural_language_inference
91
+ splits:
92
+ train_split: train
93
+ eval_split: validation
94
+ col_mapping:
95
+ premise: text1
96
+ hypothesis: text2
97
+ label: target
98
+ - config: mnli_matched
99
+ task: text-classification
100
+ task_id: natural_language_inference
101
+ splits:
102
+ train_split: train
103
+ eval_split: validation
104
+ col_mapping:
105
+ premise: text1
106
+ hypothesis: text2
107
+ label: target
108
+ - config: qnli
109
+ task: text-classification
110
+ task_id: natural_language_inference
111
+ splits:
112
+ train_split: train
113
+ eval_split: validation
114
+ col_mapping:
115
+ question: text1
116
+ sentence: text2
117
+ label: target
118
+ - config: rte
119
+ task: text-classification
120
+ task_id: natural_language_inference
121
+ splits:
122
+ train_split: train
123
+ eval_split: validation
124
+ col_mapping:
125
+ sentence1: text1
126
+ sentence2: text2
127
+ label: target
128
+ - config: wnli
129
+ task: text-classification
130
+ task_id: natural_language_inference
131
+ splits:
132
+ train_split: train
133
+ eval_split: validation
134
+ col_mapping:
135
+ sentence1: text1
136
+ sentence2: text2
137
+ label: target
138
+ configs:
139
+ - ax
140
+ - cola
141
+ - mnli
142
+ - mnli_matched
143
+ - mnli_mismatched
144
+ - mrpc
145
+ - qnli
146
+ - qqp
147
+ - rte
148
+ - sst2
149
+ - stsb
150
+ - wnli
151
+ ---
152
+
153
+ # Dataset Card for GLUE
154
+
155
+ ## Table of Contents
156
+ - [Dataset Card for GLUE](#dataset-card-for-glue)
157
+ - [Table of Contents](#table-of-contents)
158
+ - [Dataset Description](#dataset-description)
159
+ - [Dataset Summary](#dataset-summary)
160
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
161
+ - [ax](#ax)
162
+ - [cola](#cola)
163
+ - [mnli](#mnli)
164
+ - [mnli_matched](#mnli_matched)
165
+ - [mnli_mismatched](#mnli_mismatched)
166
+ - [mrpc](#mrpc)
167
+ - [qnli](#qnli)
168
+ - [qqp](#qqp)
169
+ - [rte](#rte)
170
+ - [sst2](#sst2)
171
+ - [stsb](#stsb)
172
+ - [wnli](#wnli)
173
+ - [Languages](#languages)
174
+ - [Dataset Structure](#dataset-structure)
175
+ - [Data Instances](#data-instances)
176
+ - [ax](#ax-1)
177
+ - [cola](#cola-1)
178
+ - [mnli](#mnli-1)
179
+ - [mnli_matched](#mnli_matched-1)
180
+ - [mnli_mismatched](#mnli_mismatched-1)
181
+ - [mrpc](#mrpc-1)
182
+ - [qnli](#qnli-1)
183
+ - [qqp](#qqp-1)
184
+ - [rte](#rte-1)
185
+ - [sst2](#sst2-1)
186
+ - [stsb](#stsb-1)
187
+ - [wnli](#wnli-1)
188
+ - [Data Fields](#data-fields)
189
+ - [ax](#ax-2)
190
+ - [cola](#cola-2)
191
+ - [mnli](#mnli-2)
192
+ - [mnli_matched](#mnli_matched-2)
193
+ - [mnli_mismatched](#mnli_mismatched-2)
194
+ - [mrpc](#mrpc-2)
195
+ - [qnli](#qnli-2)
196
+ - [qqp](#qqp-2)
197
+ - [rte](#rte-2)
198
+ - [sst2](#sst2-2)
199
+ - [stsb](#stsb-2)
200
+ - [wnli](#wnli-2)
201
+ - [Data Splits](#data-splits)
202
+ - [ax](#ax-3)
203
+ - [cola](#cola-3)
204
+ - [mnli](#mnli-3)
205
+ - [mnli_matched](#mnli_matched-3)
206
+ - [mnli_mismatched](#mnli_mismatched-3)
207
+ - [mrpc](#mrpc-3)
208
+ - [qnli](#qnli-3)
209
+ - [qqp](#qqp-3)
210
+ - [rte](#rte-3)
211
+ - [sst2](#sst2-3)
212
+ - [stsb](#stsb-3)
213
+ - [wnli](#wnli-3)
214
+ - [Dataset Creation](#dataset-creation)
215
+ - [Curation Rationale](#curation-rationale)
216
+ - [Source Data](#source-data)
217
+ - [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
218
+ - [Who are the source language producers?](#who-are-the-source-language-producers)
219
+ - [Annotations](#annotations)
220
+ - [Annotation process](#annotation-process)
221
+ - [Who are the annotators?](#who-are-the-annotators)
222
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
223
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
224
+ - [Social Impact of Dataset](#social-impact-of-dataset)
225
+ - [Discussion of Biases](#discussion-of-biases)
226
+ - [Other Known Limitations](#other-known-limitations)
227
+ - [Additional Information](#additional-information)
228
+ - [Dataset Curators](#dataset-curators)
229
+ - [Licensing Information](#licensing-information)
230
+ - [Citation Information](#citation-information)
231
+ - [Contributions](#contributions)
232
+
233
+ ## Dataset Description
234
+
235
+ - **Homepage:** [https://nyu-mll.github.io/CoLA/](https://nyu-mll.github.io/CoLA/)
236
+ - **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
237
+ - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
238
+ - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
239
+ - **Size of downloaded dataset files:** 955.33 MB
240
+ - **Size of the generated dataset:** 229.68 MB
241
+ - **Total amount of disk used:** 1185.01 MB
242
+
243
+ ### Dataset Summary
244
+
245
+ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems.
246
+
247
+ ### Supported Tasks and Leaderboards
248
+
249
+ The leaderboard for the GLUE benchmark can be found [at this address](https://gluebenchmark.com/). It comprises the following tasks:
250
+
251
+ #### ax
252
+
253
+ A manually-curated evaluation dataset for fine-grained analysis of system performance on a broad range of linguistic phenomena. This dataset evaluates sentence understanding through Natural Language Inference (NLI) problems. Use a model trained on MulitNLI to produce predictions for this dataset.
254
+
255
+ #### cola
256
+
257
+ The Corpus of Linguistic Acceptability consists of English acceptability judgments drawn from books and journal articles on linguistic theory. Each example is a sequence of words annotated with whether it is a grammatical English sentence.
258
+
259
+ #### mnli
260
+
261
+ The Multi-Genre Natural Language Inference Corpus is a crowdsourced collection of sentence pairs with textual entailment annotations. Given a premise sentence and a hypothesis sentence, the task is to predict whether the premise entails the hypothesis (entailment), contradicts the hypothesis (contradiction), or neither (neutral). The premise sentences are gathered from ten different sources, including transcribed speech, fiction, and government reports. The authors of the benchmark use the standard test set, for which they obtained private labels from the RTE authors, and evaluate on both the matched (in-domain) and mismatched (cross-domain) section. They also uses and recommend the SNLI corpus as 550k examples of auxiliary training data.
262
+
263
+ #### mnli_matched
264
+
265
+ The matched validation and test splits from MNLI. See the "mnli" BuilderConfig for additional information.
266
+
267
+ #### mnli_mismatched
268
+
269
+ The mismatched validation and test splits from MNLI. See the "mnli" BuilderConfig for additional information.
270
+
271
+ #### mrpc
272
+
273
+ The Microsoft Research Paraphrase Corpus (Dolan & Brockett, 2005) is a corpus of sentence pairs automatically extracted from online news sources, with human annotations for whether the sentences in the pair are semantically equivalent.
274
+
275
+ #### qnli
276
+
277
+ The Stanford Question Answering Dataset is a question-answering dataset consisting of question-paragraph pairs, where one of the sentences in the paragraph (drawn from Wikipedia) contains the answer to the corresponding question (written by an annotator). The authors of the benchmark convert the task into sentence pair classification by forming a pair between each question and each sentence in the corresponding context, and filtering out pairs with low lexical overlap between the question and the context sentence. The task is to determine whether the context sentence contains the answer to the question. This modified version of the original task removes the requirement that the model select the exact answer, but also removes the simplifying assumptions that the answer is always present in the input and that lexical overlap is a reliable cue.
278
+
279
+ #### qqp
280
+
281
+ The Quora Question Pairs2 dataset is a collection of question pairs from the community question-answering website Quora. The task is to determine whether a pair of questions are semantically equivalent.
282
+
283
+ #### rte
284
+
285
+ The Recognizing Textual Entailment (RTE) datasets come from a series of annual textual entailment challenges. The authors of the benchmark combined the data from RTE1 (Dagan et al., 2006), RTE2 (Bar Haim et al., 2006), RTE3 (Giampiccolo et al., 2007), and RTE5 (Bentivogli et al., 2009). Examples are constructed based on news and Wikipedia text. The authors of the benchmark convert all datasets to a two-class split, where for three-class datasets they collapse neutral and contradiction into not entailment, for consistency.
286
+
287
+ #### sst2
288
+
289
+ The Stanford Sentiment Treebank consists of sentences from movie reviews and human annotations of their sentiment. The task is to predict the sentiment of a given sentence. It uses the two-way (positive/negative) class split, with only sentence-level labels.
290
+
291
+ #### stsb
292
+
293
+ The Semantic Textual Similarity Benchmark (Cer et al., 2017) is a collection of sentence pairs drawn from news headlines, video and image captions, and natural language inference data. Each pair is human-annotated with a similarity score from 1 to 5.
294
+
295
+ #### wnli
296
+
297
+ The Winograd Schema Challenge (Levesque et al., 2011) is a reading comprehension task in which a system must read a sentence with a pronoun and select the referent of that pronoun from a list of choices. The examples are manually constructed to foil simple statistical methods: Each one is contingent on contextual information provided by a single word or phrase in the sentence. To convert the problem into sentence pair classification, the authors of the benchmark construct sentence pairs by replacing the ambiguous pronoun with each possible referent. The task is to predict if the sentence with the pronoun substituted is entailed by the original sentence. They use a small evaluation set consisting of new examples derived from fiction books that was shared privately by the authors of the original corpus. While the included training set is balanced between two classes, the test set is imbalanced between them (65% not entailment). Also, due to a data quirk, the development set is adversarial: hypotheses are sometimes shared between training and development examples, so if a model memorizes the training examples, they will predict the wrong label on corresponding development set example. As with QNLI, each example is evaluated separately, so there is not a systematic correspondence between a model's score on this task and its score on the unconverted original task. The authors of the benchmark call converted dataset WNLI (Winograd NLI).
298
+
299
+ ### Languages
300
+
301
+ The language data in GLUE is in English (BCP-47 `en`)
302
+
303
+ ## Dataset Structure
304
+
305
+ ### Data Instances
306
+
307
+ #### ax
308
+
309
+ - **Size of downloaded dataset files:** 0.21 MB
310
+ - **Size of the generated dataset:** 0.23 MB
311
+ - **Total amount of disk used:** 0.44 MB
312
+
313
+ An example of 'test' looks as follows.
314
+ ```
315
+ {
316
+ "premise": "The cat sat on the mat.",
317
+ "hypothesis": "The cat did not sit on the mat.",
318
+ "label": -1,
319
+ "idx: 0
320
+ }
321
+ ```
322
+
323
+ #### cola
324
+
325
+ - **Size of downloaded dataset files:** 0.36 MB
326
+ - **Size of the generated dataset:** 0.58 MB
327
+ - **Total amount of disk used:** 0.94 MB
328
+
329
+ An example of 'train' looks as follows.
330
+ ```
331
+ {
332
+ "sentence": "Our friends won't buy this analysis, let alone the next one we propose.",
333
+ "label": 1,
334
+ "id": 0
335
+ }
336
+ ```
337
+
338
+ #### mnli
339
+
340
+ - **Size of downloaded dataset files:** 298.29 MB
341
+ - **Size of the generated dataset:** 78.65 MB
342
+ - **Total amount of disk used:** 376.95 MB
343
+
344
+ An example of 'train' looks as follows.
345
+ ```
346
+ {
347
+ "premise": "Conceptually cream skimming has two basic dimensions - product and geography.",
348
+ "hypothesis": "Product and geography are what make cream skimming work.",
349
+ "label": 1,
350
+ "idx": 0
351
+ }
352
+ ```
353
+
354
+ #### mnli_matched
355
+
356
+ - **Size of downloaded dataset files:** 298.29 MB
357
+ - **Size of the generated dataset:** 3.52 MB
358
+ - **Total amount of disk used:** 301.82 MB
359
+
360
+ An example of 'test' looks as follows.
361
+ ```
362
+ {
363
+ "premise": "Hierbas, ans seco, ans dulce, and frigola are just a few names worth keeping a look-out for.",
364
+ "hypothesis": "Hierbas is a name worth looking out for.",
365
+ "label": -1,
366
+ "idx": 0
367
+ }
368
+ ```
369
+
370
+ #### mnli_mismatched
371
+
372
+ - **Size of downloaded dataset files:** 298.29 MB
373
+ - **Size of the generated dataset:** 3.73 MB
374
+ - **Total amount of disk used:** 302.02 MB
375
+
376
+ An example of 'test' looks as follows.
377
+ ```
378
+ {
379
+ "premise": "What have you decided, what are you going to do?",
380
+ "hypothesis": "So what's your decision?,
381
+ "label": -1,
382
+ "idx": 0
383
+ }
384
+ ```
385
+
386
+ #### mrpc
387
+
388
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
389
+
390
+ #### qnli
391
+
392
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
393
+
394
+ #### qqp
395
+
396
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
397
+
398
+ #### rte
399
+
400
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
401
+
402
+ #### sst2
403
+
404
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
405
+
406
+ #### stsb
407
+
408
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
409
+
410
+ #### wnli
411
+
412
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
413
+
414
+ ### Data Fields
415
+
416
+ The data fields are the same among all splits.
417
+
418
+ #### ax
419
+ - `premise`: a `string` feature.
420
+ - `hypothesis`: a `string` feature.
421
+ - `label`: a classification label, with possible values including `entailment` (0), `neutral` (1), `contradiction` (2).
422
+ - `idx`: a `int32` feature.
423
+
424
+ #### cola
425
+ - `sentence`: a `string` feature.
426
+ - `label`: a classification label, with possible values including `unacceptable` (0), `acceptable` (1).
427
+ - `idx`: a `int32` feature.
428
+
429
+ #### mnli
430
+ - `premise`: a `string` feature.
431
+ - `hypothesis`: a `string` feature.
432
+ - `label`: a classification label, with possible values including `entailment` (0), `neutral` (1), `contradiction` (2).
433
+ - `idx`: a `int32` feature.
434
+
435
+ #### mnli_matched
436
+ - `premise`: a `string` feature.
437
+ - `hypothesis`: a `string` feature.
438
+ - `label`: a classification label, with possible values including `entailment` (0), `neutral` (1), `contradiction` (2).
439
+ - `idx`: a `int32` feature.
440
+
441
+ #### mnli_mismatched
442
+ - `premise`: a `string` feature.
443
+ - `hypothesis`: a `string` feature.
444
+ - `label`: a classification label, with possible values including `entailment` (0), `neutral` (1), `contradiction` (2).
445
+ - `idx`: a `int32` feature.
446
+
447
+ #### mrpc
448
+
449
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
450
+
451
+ #### qnli
452
+
453
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
454
+
455
+ #### qqp
456
+
457
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
458
+
459
+ #### rte
460
+
461
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
462
+
463
+ #### sst2
464
+
465
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
466
+
467
+ #### stsb
468
+
469
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
470
+
471
+ #### wnli
472
+
473
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
474
+
475
+ ### Data Splits
476
+
477
+ #### ax
478
+
479
+ | |test|
480
+ |---|---:|
481
+ |ax |1104|
482
+
483
+ #### cola
484
+
485
+ | |train|validation|test|
486
+ |----|----:|---------:|---:|
487
+ |cola| 8551| 1043|1063|
488
+
489
+ #### mnli
490
+
491
+ | |train |validation_matched|validation_mismatched|test_matched|test_mismatched|
492
+ |----|-----:|-----------------:|--------------------:|-----------:|--------------:|
493
+ |mnli|392702| 9815| 9832| 9796| 9847|
494
+
495
+ #### mnli_matched
496
+
497
+ | |validation|test|
498
+ |------------|---------:|---:|
499
+ |mnli_matched| 9815|9796|
500
+
501
+ #### mnli_mismatched
502
+
503
+ | |validation|test|
504
+ |---------------|---------:|---:|
505
+ |mnli_mismatched| 9832|9847|
506
+
507
+ #### mrpc
508
+
509
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
510
+
511
+ #### qnli
512
+
513
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
514
+
515
+ #### qqp
516
+
517
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
518
+
519
+ #### rte
520
+
521
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
522
+
523
+ #### sst2
524
+
525
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
526
+
527
+ #### stsb
528
+
529
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
530
+
531
+ #### wnli
532
+
533
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
534
+
535
+ ## Dataset Creation
536
+
537
+ ### Curation Rationale
538
+
539
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
540
+
541
+ ### Source Data
542
+
543
+ #### Initial Data Collection and Normalization
544
+
545
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
546
+
547
+ #### Who are the source language producers?
548
+
549
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
550
+
551
+ ### Annotations
552
+
553
+ #### Annotation process
554
+
555
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
556
+
557
+ #### Who are the annotators?
558
+
559
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
560
+
561
+ ### Personal and Sensitive Information
562
+
563
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
564
+
565
+ ## Considerations for Using the Data
566
+
567
+ ### Social Impact of Dataset
568
+
569
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
570
+
571
+ ### Discussion of Biases
572
+
573
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
574
+
575
+ ### Other Known Limitations
576
+
577
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
578
+
579
+ ## Additional Information
580
+
581
+ ### Dataset Curators
582
+
583
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
584
+
585
+ ### Licensing Information
586
+
587
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
588
+
589
+ ### Citation Information
590
+
591
+ ```
592
+ @article{warstadt2018neural,
593
+ title={Neural Network Acceptability Judgments},
594
+ author={Warstadt, Alex and Singh, Amanpreet and Bowman, Samuel R},
595
+ journal={arXiv preprint arXiv:1805.12471},
596
+ year={2018}
597
+ }
598
+ @inproceedings{wang2019glue,
599
+ title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},
600
+ author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},
601
+ note={In the Proceedings of ICLR.},
602
+ year={2019}
603
+ }
604
+
605
+ Note that each GLUE dataset has its own citation. Please see the source to see
606
+ the correct citation for each contained dataset.
607
+ ```
608
+
609
+
610
+ ### Contributions
611
+
612
+ Thanks to [@patpizio](https://github.com/patpizio), [@jeswan](https://github.com/jeswan), [@thomwolf](https://github.com/thomwolf), [@patrickvonplaten](https://github.com/patrickvonplaten), [@mariamabarham](https://github.com/mariamabarham) for adding this dataset.
dataset_infos.json ADDED
@@ -0,0 +1,875 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cola": {
3
+ "description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n",
4
+ "citation": "@article{warstadt2018neural,\n title={Neural Network Acceptability Judgments},\n author={Warstadt, Alex and Singh, Amanpreet and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1805.12471},\n year={2018}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n\nNote that each GLUE dataset has its own citation. Please see the source to see\nthe correct citation for each contained dataset.",
5
+ "homepage": "https://nyu-mll.github.io/CoLA/",
6
+ "license": "",
7
+ "features": {
8
+ "sentence": {
9
+ "dtype": "string",
10
+ "id": null,
11
+ "_type": "Value"
12
+ },
13
+ "label": {
14
+ "num_classes": 2,
15
+ "names": [
16
+ "unacceptable",
17
+ "acceptable"
18
+ ],
19
+ "names_file": null,
20
+ "id": null,
21
+ "_type": "ClassLabel"
22
+ },
23
+ "idx": {
24
+ "dtype": "int32",
25
+ "id": null,
26
+ "_type": "Value"
27
+ }
28
+ },
29
+ "post_processed": null,
30
+ "supervised_keys": null,
31
+ "builder_name": "glue",
32
+ "config_name": "cola",
33
+ "version": {
34
+ "version_str": "1.0.0",
35
+ "description": "",
36
+ "major": 1,
37
+ "minor": 0,
38
+ "patch": 0
39
+ },
40
+ "splits": {
41
+ "test": {
42
+ "name": "test",
43
+ "num_bytes": 61049,
44
+ "num_examples": 1063,
45
+ "dataset_name": "glue"
46
+ },
47
+ "train": {
48
+ "name": "train",
49
+ "num_bytes": 489149,
50
+ "num_examples": 8551,
51
+ "dataset_name": "glue"
52
+ },
53
+ "validation": {
54
+ "name": "validation",
55
+ "num_bytes": 60850,
56
+ "num_examples": 1043,
57
+ "dataset_name": "glue"
58
+ }
59
+ },
60
+ "download_checksums": {
61
+ "https://dl.fbaipublicfiles.com/glue/data/CoLA.zip": {
62
+ "num_bytes": 376971,
63
+ "checksum": "f212fcd832b8f7b435fb991f101abf89f96b933ab400603bf198960dfc32cbff"
64
+ }
65
+ },
66
+ "download_size": 376971,
67
+ "post_processing_size": null,
68
+ "dataset_size": 611048,
69
+ "size_in_bytes": 988019
70
+ },
71
+ "sst2": {
72
+ "description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n",
73
+ "citation": "@inproceedings{socher2013recursive,\n title={Recursive deep models for semantic compositionality over a sentiment treebank},\n author={Socher, Richard and Perelygin, Alex and Wu, Jean and Chuang, Jason and Manning, Christopher D and Ng, Andrew and Potts, Christopher},\n booktitle={Proceedings of the 2013 conference on empirical methods in natural language processing},\n pages={1631--1642},\n year={2013}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n\nNote that each GLUE dataset has its own citation. Please see the source to see\nthe correct citation for each contained dataset.",
74
+ "homepage": "https://nlp.stanford.edu/sentiment/index.html",
75
+ "license": "",
76
+ "features": {
77
+ "sentence": {
78
+ "dtype": "string",
79
+ "id": null,
80
+ "_type": "Value"
81
+ },
82
+ "label": {
83
+ "num_classes": 2,
84
+ "names": [
85
+ "negative",
86
+ "positive"
87
+ ],
88
+ "names_file": null,
89
+ "id": null,
90
+ "_type": "ClassLabel"
91
+ },
92
+ "idx": {
93
+ "dtype": "int32",
94
+ "id": null,
95
+ "_type": "Value"
96
+ }
97
+ },
98
+ "post_processed": null,
99
+ "supervised_keys": null,
100
+ "builder_name": "glue",
101
+ "config_name": "sst2",
102
+ "version": {
103
+ "version_str": "1.0.0",
104
+ "description": "",
105
+ "major": 1,
106
+ "minor": 0,
107
+ "patch": 0
108
+ },
109
+ "splits": {
110
+ "test": {
111
+ "name": "test",
112
+ "num_bytes": 217556,
113
+ "num_examples": 1821,
114
+ "dataset_name": "glue"
115
+ },
116
+ "train": {
117
+ "name": "train",
118
+ "num_bytes": 4715283,
119
+ "num_examples": 67349,
120
+ "dataset_name": "glue"
121
+ },
122
+ "validation": {
123
+ "name": "validation",
124
+ "num_bytes": 106692,
125
+ "num_examples": 872,
126
+ "dataset_name": "glue"
127
+ }
128
+ },
129
+ "download_checksums": {
130
+ "https://dl.fbaipublicfiles.com/glue/data/SST-2.zip": {
131
+ "num_bytes": 7439277,
132
+ "checksum": "d67e16fb55739c1b32cdce9877596db1c127dc322d93c082281f64057c16deaa"
133
+ }
134
+ },
135
+ "download_size": 7439277,
136
+ "post_processing_size": null,
137
+ "dataset_size": 5039531,
138
+ "size_in_bytes": 12478808
139
+ },
140
+ "mrpc": {
141
+ "description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n",
142
+ "citation": "@inproceedings{dolan2005automatically,\n title={Automatically constructing a corpus of sentential paraphrases},\n author={Dolan, William B and Brockett, Chris},\n booktitle={Proceedings of the Third International Workshop on Paraphrasing (IWP2005)},\n year={2005}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n\nNote that each GLUE dataset has its own citation. Please see the source to see\nthe correct citation for each contained dataset.",
143
+ "homepage": "https://www.microsoft.com/en-us/download/details.aspx?id=52398",
144
+ "license": "",
145
+ "features": {
146
+ "sentence1": {
147
+ "dtype": "string",
148
+ "id": null,
149
+ "_type": "Value"
150
+ },
151
+ "sentence2": {
152
+ "dtype": "string",
153
+ "id": null,
154
+ "_type": "Value"
155
+ },
156
+ "label": {
157
+ "num_classes": 2,
158
+ "names": [
159
+ "not_equivalent",
160
+ "equivalent"
161
+ ],
162
+ "names_file": null,
163
+ "id": null,
164
+ "_type": "ClassLabel"
165
+ },
166
+ "idx": {
167
+ "dtype": "int32",
168
+ "id": null,
169
+ "_type": "Value"
170
+ }
171
+ },
172
+ "post_processed": null,
173
+ "supervised_keys": null,
174
+ "builder_name": "glue",
175
+ "config_name": "mrpc",
176
+ "version": {
177
+ "version_str": "1.0.0",
178
+ "description": "",
179
+ "major": 1,
180
+ "minor": 0,
181
+ "patch": 0
182
+ },
183
+ "splits": {
184
+ "test": {
185
+ "name": "test",
186
+ "num_bytes": 443498,
187
+ "num_examples": 1725,
188
+ "dataset_name": "glue"
189
+ },
190
+ "train": {
191
+ "name": "train",
192
+ "num_bytes": 946146,
193
+ "num_examples": 3668,
194
+ "dataset_name": "glue"
195
+ },
196
+ "validation": {
197
+ "name": "validation",
198
+ "num_bytes": 106142,
199
+ "num_examples": 408,
200
+ "dataset_name": "glue"
201
+ }
202
+ },
203
+ "download_checksums": {
204
+ "https://dl.fbaipublicfiles.com/glue/data/mrpc_dev_ids.tsv": {
205
+ "num_bytes": 6222,
206
+ "checksum": "971d7767d81b997fd9060ade0ec23c4fc31cbb226a55d1bd4a1bac474eb81dc7"
207
+ },
208
+ "https://dl.fbaipublicfiles.com/senteval/senteval_data/msr_paraphrase_train.txt": {
209
+ "num_bytes": 1047044,
210
+ "checksum": "60a9b09084528f0673eedee2b69cb941920f0b8cd0eeccefc464a98768457f89"
211
+ },
212
+ "https://dl.fbaipublicfiles.com/senteval/senteval_data/msr_paraphrase_test.txt": {
213
+ "num_bytes": 441275,
214
+ "checksum": "a04e271090879aaba6423d65b94950c089298587d9c084bf9cd7439bd785f784"
215
+ }
216
+ },
217
+ "download_size": 1494541,
218
+ "post_processing_size": null,
219
+ "dataset_size": 1495786,
220
+ "size_in_bytes": 2990327
221
+ },
222
+ "qqp": {
223
+ "description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n",
224
+ "citation": "@online{WinNT,\n author = {Iyer, Shankar and Dandekar, Nikhil and Csernai, Kornel},\n title = {First Quora Dataset Release: Question Pairs},\n year = {2017},\n url = {https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs},\n urldate = {2019-04-03}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n",
225
+ "homepage": "https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs",
226
+ "license": "",
227
+ "features": {
228
+ "question1": {
229
+ "dtype": "string",
230
+ "id": null,
231
+ "_type": "Value"
232
+ },
233
+ "question2": {
234
+ "dtype": "string",
235
+ "id": null,
236
+ "_type": "Value"
237
+ },
238
+ "label": {
239
+ "num_classes": 2,
240
+ "names": [
241
+ "not_duplicate",
242
+ "duplicate"
243
+ ],
244
+ "names_file": null,
245
+ "id": null,
246
+ "_type": "ClassLabel"
247
+ },
248
+ "idx": {
249
+ "dtype": "int32",
250
+ "id": null,
251
+ "_type": "Value"
252
+ }
253
+ },
254
+ "post_processed": null,
255
+ "supervised_keys": null,
256
+ "builder_name": "glue",
257
+ "config_name": "qqp",
258
+ "version": {
259
+ "version_str": "1.0.0",
260
+ "description": "",
261
+ "major": 1,
262
+ "minor": 0,
263
+ "patch": 0
264
+ },
265
+ "splits": {
266
+ "train": {
267
+ "name": "train",
268
+ "num_bytes": 50901116,
269
+ "num_examples": 363846,
270
+ "dataset_name": "glue"
271
+ },
272
+ "validation": {
273
+ "name": "validation",
274
+ "num_bytes": 5653794,
275
+ "num_examples": 40430,
276
+ "dataset_name": "glue"
277
+ },
278
+ "test": {
279
+ "name": "test",
280
+ "num_bytes": 55171431,
281
+ "num_examples": 390965,
282
+ "dataset_name": "glue"
283
+ }
284
+ },
285
+ "download_checksums": {
286
+ "https://dl.fbaipublicfiles.com/glue/data/QQP-clean.zip": {
287
+ "num_bytes": 41696084,
288
+ "checksum": "40e7c862c04eb26ee04b67fd900e76c45c6ba8e6d8fab4f8f1f8072a1a3fbae0"
289
+ }
290
+ },
291
+ "download_size": 41696084,
292
+ "post_processing_size": null,
293
+ "dataset_size": 111726341,
294
+ "size_in_bytes": 153422425
295
+ },
296
+ "stsb": {
297
+ "description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n",
298
+ "citation": "@article{cer2017semeval,\n title={Semeval-2017 task 1: Semantic textual similarity-multilingual and cross-lingual focused evaluation},\n author={Cer, Daniel and Diab, Mona and Agirre, Eneko and Lopez-Gazpio, Inigo and Specia, Lucia},\n journal={arXiv preprint arXiv:1708.00055},\n year={2017}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n\nNote that each GLUE dataset has its own citation. Please see the source to see\nthe correct citation for each contained dataset.",
299
+ "homepage": "http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark",
300
+ "license": "",
301
+ "features": {
302
+ "sentence1": {
303
+ "dtype": "string",
304
+ "id": null,
305
+ "_type": "Value"
306
+ },
307
+ "sentence2": {
308
+ "dtype": "string",
309
+ "id": null,
310
+ "_type": "Value"
311
+ },
312
+ "label": {
313
+ "dtype": "float32",
314
+ "id": null,
315
+ "_type": "Value"
316
+ },
317
+ "idx": {
318
+ "dtype": "int32",
319
+ "id": null,
320
+ "_type": "Value"
321
+ }
322
+ },
323
+ "post_processed": null,
324
+ "supervised_keys": null,
325
+ "builder_name": "glue",
326
+ "config_name": "stsb",
327
+ "version": {
328
+ "version_str": "1.0.0",
329
+ "description": "",
330
+ "major": 1,
331
+ "minor": 0,
332
+ "patch": 0
333
+ },
334
+ "splits": {
335
+ "test": {
336
+ "name": "test",
337
+ "num_bytes": 170847,
338
+ "num_examples": 1379,
339
+ "dataset_name": "glue"
340
+ },
341
+ "train": {
342
+ "name": "train",
343
+ "num_bytes": 758394,
344
+ "num_examples": 5749,
345
+ "dataset_name": "glue"
346
+ },
347
+ "validation": {
348
+ "name": "validation",
349
+ "num_bytes": 217012,
350
+ "num_examples": 1500,
351
+ "dataset_name": "glue"
352
+ }
353
+ },
354
+ "download_checksums": {
355
+ "https://dl.fbaipublicfiles.com/glue/data/STS-B.zip": {
356
+ "num_bytes": 802872,
357
+ "checksum": "e60a6393de5a8b5b9bac5020a1554b54e3691f9d600b775bd131e613ac179c85"
358
+ }
359
+ },
360
+ "download_size": 802872,
361
+ "post_processing_size": null,
362
+ "dataset_size": 1146253,
363
+ "size_in_bytes": 1949125
364
+ },
365
+ "mnli": {
366
+ "description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n",
367
+ "citation": "@InProceedings{N18-1101,\n author = \"Williams, Adina\n and Nangia, Nikita\n and Bowman, Samuel\",\n title = \"A Broad-Coverage Challenge Corpus for\n Sentence Understanding through Inference\",\n booktitle = \"Proceedings of the 2018 Conference of\n the North American Chapter of the\n Association for Computational Linguistics:\n Human Language Technologies, Volume 1 (Long\n Papers)\",\n year = \"2018\",\n publisher = \"Association for Computational Linguistics\",\n pages = \"1112--1122\",\n location = \"New Orleans, Louisiana\",\n url = \"http://aclweb.org/anthology/N18-1101\"\n}\n@article{bowman2015large,\n title={A large annotated corpus for learning natural language inference},\n author={Bowman, Samuel R and Angeli, Gabor and Potts, Christopher and Manning, Christopher D},\n journal={arXiv preprint arXiv:1508.05326},\n year={2015}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n\nNote that each GLUE dataset has its own citation. Please see the source to see\nthe correct citation for each contained dataset.",
368
+ "homepage": "http://www.nyu.edu/projects/bowman/multinli/",
369
+ "license": "",
370
+ "features": {
371
+ "premise": {
372
+ "dtype": "string",
373
+ "id": null,
374
+ "_type": "Value"
375
+ },
376
+ "hypothesis": {
377
+ "dtype": "string",
378
+ "id": null,
379
+ "_type": "Value"
380
+ },
381
+ "label": {
382
+ "num_classes": 3,
383
+ "names": [
384
+ "entailment",
385
+ "neutral",
386
+ "contradiction"
387
+ ],
388
+ "names_file": null,
389
+ "id": null,
390
+ "_type": "ClassLabel"
391
+ },
392
+ "idx": {
393
+ "dtype": "int32",
394
+ "id": null,
395
+ "_type": "Value"
396
+ }
397
+ },
398
+ "post_processed": null,
399
+ "supervised_keys": null,
400
+ "builder_name": "glue",
401
+ "config_name": "mnli",
402
+ "version": {
403
+ "version_str": "1.0.0",
404
+ "description": "",
405
+ "major": 1,
406
+ "minor": 0,
407
+ "patch": 0
408
+ },
409
+ "splits": {
410
+ "test_matched": {
411
+ "name": "test_matched",
412
+ "num_bytes": 1854787,
413
+ "num_examples": 9796,
414
+ "dataset_name": "glue"
415
+ },
416
+ "test_mismatched": {
417
+ "name": "test_mismatched",
418
+ "num_bytes": 1956866,
419
+ "num_examples": 9847,
420
+ "dataset_name": "glue"
421
+ },
422
+ "train": {
423
+ "name": "train",
424
+ "num_bytes": 74865118,
425
+ "num_examples": 392702,
426
+ "dataset_name": "glue"
427
+ },
428
+ "validation_matched": {
429
+ "name": "validation_matched",
430
+ "num_bytes": 1839926,
431
+ "num_examples": 9815,
432
+ "dataset_name": "glue"
433
+ },
434
+ "validation_mismatched": {
435
+ "name": "validation_mismatched",
436
+ "num_bytes": 1955384,
437
+ "num_examples": 9832,
438
+ "dataset_name": "glue"
439
+ }
440
+ },
441
+ "download_checksums": {
442
+ "https://dl.fbaipublicfiles.com/glue/data/MNLI.zip": {
443
+ "num_bytes": 312783507,
444
+ "checksum": "e7c1d896d26ed6caf700110645df426cc2d8ebf02a5ab743d5a5c68ac1c83633"
445
+ }
446
+ },
447
+ "download_size": 312783507,
448
+ "post_processing_size": null,
449
+ "dataset_size": 82472081,
450
+ "size_in_bytes": 395255588
451
+ },
452
+ "mnli_mismatched": {
453
+ "description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n",
454
+ "citation": "@InProceedings{N18-1101,\n author = \"Williams, Adina\n and Nangia, Nikita\n and Bowman, Samuel\",\n title = \"A Broad-Coverage Challenge Corpus for\n Sentence Understanding through Inference\",\n booktitle = \"Proceedings of the 2018 Conference of\n the North American Chapter of the\n Association for Computational Linguistics:\n Human Language Technologies, Volume 1 (Long\n Papers)\",\n year = \"2018\",\n publisher = \"Association for Computational Linguistics\",\n pages = \"1112--1122\",\n location = \"New Orleans, Louisiana\",\n url = \"http://aclweb.org/anthology/N18-1101\"\n}\n@article{bowman2015large,\n title={A large annotated corpus for learning natural language inference},\n author={Bowman, Samuel R and Angeli, Gabor and Potts, Christopher and Manning, Christopher D},\n journal={arXiv preprint arXiv:1508.05326},\n year={2015}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n\nNote that each GLUE dataset has its own citation. Please see the source to see\nthe correct citation for each contained dataset.",
455
+ "homepage": "http://www.nyu.edu/projects/bowman/multinli/",
456
+ "license": "",
457
+ "features": {
458
+ "premise": {
459
+ "dtype": "string",
460
+ "id": null,
461
+ "_type": "Value"
462
+ },
463
+ "hypothesis": {
464
+ "dtype": "string",
465
+ "id": null,
466
+ "_type": "Value"
467
+ },
468
+ "label": {
469
+ "num_classes": 3,
470
+ "names": [
471
+ "entailment",
472
+ "neutral",
473
+ "contradiction"
474
+ ],
475
+ "names_file": null,
476
+ "id": null,
477
+ "_type": "ClassLabel"
478
+ },
479
+ "idx": {
480
+ "dtype": "int32",
481
+ "id": null,
482
+ "_type": "Value"
483
+ }
484
+ },
485
+ "post_processed": null,
486
+ "supervised_keys": null,
487
+ "builder_name": "glue",
488
+ "config_name": "mnli_mismatched",
489
+ "version": {
490
+ "version_str": "1.0.0",
491
+ "description": "",
492
+ "major": 1,
493
+ "minor": 0,
494
+ "patch": 0
495
+ },
496
+ "splits": {
497
+ "test": {
498
+ "name": "test",
499
+ "num_bytes": 1956866,
500
+ "num_examples": 9847,
501
+ "dataset_name": "glue"
502
+ },
503
+ "validation": {
504
+ "name": "validation",
505
+ "num_bytes": 1955384,
506
+ "num_examples": 9832,
507
+ "dataset_name": "glue"
508
+ }
509
+ },
510
+ "download_checksums": {
511
+ "https://dl.fbaipublicfiles.com/glue/data/MNLI.zip": {
512
+ "num_bytes": 312783507,
513
+ "checksum": "e7c1d896d26ed6caf700110645df426cc2d8ebf02a5ab743d5a5c68ac1c83633"
514
+ }
515
+ },
516
+ "download_size": 312783507,
517
+ "post_processing_size": null,
518
+ "dataset_size": 3912250,
519
+ "size_in_bytes": 316695757
520
+ },
521
+ "mnli_matched": {
522
+ "description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n",
523
+ "citation": "@InProceedings{N18-1101,\n author = \"Williams, Adina\n and Nangia, Nikita\n and Bowman, Samuel\",\n title = \"A Broad-Coverage Challenge Corpus for\n Sentence Understanding through Inference\",\n booktitle = \"Proceedings of the 2018 Conference of\n the North American Chapter of the\n Association for Computational Linguistics:\n Human Language Technologies, Volume 1 (Long\n Papers)\",\n year = \"2018\",\n publisher = \"Association for Computational Linguistics\",\n pages = \"1112--1122\",\n location = \"New Orleans, Louisiana\",\n url = \"http://aclweb.org/anthology/N18-1101\"\n}\n@article{bowman2015large,\n title={A large annotated corpus for learning natural language inference},\n author={Bowman, Samuel R and Angeli, Gabor and Potts, Christopher and Manning, Christopher D},\n journal={arXiv preprint arXiv:1508.05326},\n year={2015}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n\nNote that each GLUE dataset has its own citation. Please see the source to see\nthe correct citation for each contained dataset.",
524
+ "homepage": "http://www.nyu.edu/projects/bowman/multinli/",
525
+ "license": "",
526
+ "features": {
527
+ "premise": {
528
+ "dtype": "string",
529
+ "id": null,
530
+ "_type": "Value"
531
+ },
532
+ "hypothesis": {
533
+ "dtype": "string",
534
+ "id": null,
535
+ "_type": "Value"
536
+ },
537
+ "label": {
538
+ "num_classes": 3,
539
+ "names": [
540
+ "entailment",
541
+ "neutral",
542
+ "contradiction"
543
+ ],
544
+ "names_file": null,
545
+ "id": null,
546
+ "_type": "ClassLabel"
547
+ },
548
+ "idx": {
549
+ "dtype": "int32",
550
+ "id": null,
551
+ "_type": "Value"
552
+ }
553
+ },
554
+ "post_processed": null,
555
+ "supervised_keys": null,
556
+ "builder_name": "glue",
557
+ "config_name": "mnli_matched",
558
+ "version": {
559
+ "version_str": "1.0.0",
560
+ "description": "",
561
+ "major": 1,
562
+ "minor": 0,
563
+ "patch": 0
564
+ },
565
+ "splits": {
566
+ "test": {
567
+ "name": "test",
568
+ "num_bytes": 1854787,
569
+ "num_examples": 9796,
570
+ "dataset_name": "glue"
571
+ },
572
+ "validation": {
573
+ "name": "validation",
574
+ "num_bytes": 1839926,
575
+ "num_examples": 9815,
576
+ "dataset_name": "glue"
577
+ }
578
+ },
579
+ "download_checksums": {
580
+ "https://dl.fbaipublicfiles.com/glue/data/MNLI.zip": {
581
+ "num_bytes": 312783507,
582
+ "checksum": "e7c1d896d26ed6caf700110645df426cc2d8ebf02a5ab743d5a5c68ac1c83633"
583
+ }
584
+ },
585
+ "download_size": 312783507,
586
+ "post_processing_size": null,
587
+ "dataset_size": 3694713,
588
+ "size_in_bytes": 316478220
589
+ },
590
+ "qnli": {
591
+ "description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n",
592
+ "citation": "@article{rajpurkar2016squad,\n title={Squad: 100,000+ questions for machine comprehension of text},\n author={Rajpurkar, Pranav and Zhang, Jian and Lopyrev, Konstantin and Liang, Percy},\n journal={arXiv preprint arXiv:1606.05250},\n year={2016}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n\nNote that each GLUE dataset has its own citation. Please see the source to see\nthe correct citation for each contained dataset.",
593
+ "homepage": "https://rajpurkar.github.io/SQuAD-explorer/",
594
+ "license": "",
595
+ "features": {
596
+ "question": {
597
+ "dtype": "string",
598
+ "id": null,
599
+ "_type": "Value"
600
+ },
601
+ "sentence": {
602
+ "dtype": "string",
603
+ "id": null,
604
+ "_type": "Value"
605
+ },
606
+ "label": {
607
+ "num_classes": 2,
608
+ "names": [
609
+ "entailment",
610
+ "not_entailment"
611
+ ],
612
+ "names_file": null,
613
+ "id": null,
614
+ "_type": "ClassLabel"
615
+ },
616
+ "idx": {
617
+ "dtype": "int32",
618
+ "id": null,
619
+ "_type": "Value"
620
+ }
621
+ },
622
+ "post_processed": null,
623
+ "supervised_keys": null,
624
+ "builder_name": "glue",
625
+ "config_name": "qnli",
626
+ "version": {
627
+ "version_str": "1.0.0",
628
+ "description": "",
629
+ "major": 1,
630
+ "minor": 0,
631
+ "patch": 0
632
+ },
633
+ "splits": {
634
+ "test": {
635
+ "name": "test",
636
+ "num_bytes": 1376516,
637
+ "num_examples": 5463,
638
+ "dataset_name": "glue"
639
+ },
640
+ "train": {
641
+ "name": "train",
642
+ "num_bytes": 25677924,
643
+ "num_examples": 104743,
644
+ "dataset_name": "glue"
645
+ },
646
+ "validation": {
647
+ "name": "validation",
648
+ "num_bytes": 1371727,
649
+ "num_examples": 5463,
650
+ "dataset_name": "glue"
651
+ }
652
+ },
653
+ "download_checksums": {
654
+ "https://dl.fbaipublicfiles.com/glue/data/QNLIv2.zip": {
655
+ "num_bytes": 10627589,
656
+ "checksum": "e634e78627a29adaecd4f955359b22bf5e70f2cbd93b493f2d624138a0c0e5f5"
657
+ }
658
+ },
659
+ "download_size": 10627589,
660
+ "post_processing_size": null,
661
+ "dataset_size": 28426167,
662
+ "size_in_bytes": 39053756
663
+ },
664
+ "rte": {
665
+ "description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n",
666
+ "citation": "@inproceedings{dagan2005pascal,\n title={The PASCAL recognising textual entailment challenge},\n author={Dagan, Ido and Glickman, Oren and Magnini, Bernardo},\n booktitle={Machine Learning Challenges Workshop},\n pages={177--190},\n year={2005},\n organization={Springer}\n}\n@inproceedings{bar2006second,\n title={The second pascal recognising textual entailment challenge},\n author={Bar-Haim, Roy and Dagan, Ido and Dolan, Bill and Ferro, Lisa and Giampiccolo, Danilo and Magnini, Bernardo and Szpektor, Idan},\n booktitle={Proceedings of the second PASCAL challenges workshop on recognising textual entailment},\n volume={6},\n number={1},\n pages={6--4},\n year={2006},\n organization={Venice}\n}\n@inproceedings{giampiccolo2007third,\n title={The third pascal recognizing textual entailment challenge},\n author={Giampiccolo, Danilo and Magnini, Bernardo and Dagan, Ido and Dolan, Bill},\n booktitle={Proceedings of the ACL-PASCAL workshop on textual entailment and paraphrasing},\n pages={1--9},\n year={2007},\n organization={Association for Computational Linguistics}\n}\n@inproceedings{bentivogli2009fifth,\n title={The Fifth PASCAL Recognizing Textual Entailment Challenge.},\n author={Bentivogli, Luisa and Clark, Peter and Dagan, Ido and Giampiccolo, Danilo},\n booktitle={TAC},\n year={2009}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n\nNote that each GLUE dataset has its own citation. Please see the source to see\nthe correct citation for each contained dataset.",
667
+ "homepage": "https://aclweb.org/aclwiki/Recognizing_Textual_Entailment",
668
+ "license": "",
669
+ "features": {
670
+ "sentence1": {
671
+ "dtype": "string",
672
+ "id": null,
673
+ "_type": "Value"
674
+ },
675
+ "sentence2": {
676
+ "dtype": "string",
677
+ "id": null,
678
+ "_type": "Value"
679
+ },
680
+ "label": {
681
+ "num_classes": 2,
682
+ "names": [
683
+ "entailment",
684
+ "not_entailment"
685
+ ],
686
+ "names_file": null,
687
+ "id": null,
688
+ "_type": "ClassLabel"
689
+ },
690
+ "idx": {
691
+ "dtype": "int32",
692
+ "id": null,
693
+ "_type": "Value"
694
+ }
695
+ },
696
+ "post_processed": null,
697
+ "supervised_keys": null,
698
+ "builder_name": "glue",
699
+ "config_name": "rte",
700
+ "version": {
701
+ "version_str": "1.0.0",
702
+ "description": "",
703
+ "major": 1,
704
+ "minor": 0,
705
+ "patch": 0
706
+ },
707
+ "splits": {
708
+ "test": {
709
+ "name": "test",
710
+ "num_bytes": 975936,
711
+ "num_examples": 3000,
712
+ "dataset_name": "glue"
713
+ },
714
+ "train": {
715
+ "name": "train",
716
+ "num_bytes": 848888,
717
+ "num_examples": 2490,
718
+ "dataset_name": "glue"
719
+ },
720
+ "validation": {
721
+ "name": "validation",
722
+ "num_bytes": 90911,
723
+ "num_examples": 277,
724
+ "dataset_name": "glue"
725
+ }
726
+ },
727
+ "download_checksums": {
728
+ "https://dl.fbaipublicfiles.com/glue/data/RTE.zip": {
729
+ "num_bytes": 697150,
730
+ "checksum": "6bf86de103ecd335f3441bd43574d23fef87ecc695977a63b82d5efb206556ee"
731
+ }
732
+ },
733
+ "download_size": 697150,
734
+ "post_processing_size": null,
735
+ "dataset_size": 1915735,
736
+ "size_in_bytes": 2612885
737
+ },
738
+ "wnli": {
739
+ "description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n",
740
+ "citation": "@inproceedings{levesque2012winograd,\n title={The winograd schema challenge},\n author={Levesque, Hector and Davis, Ernest and Morgenstern, Leora},\n booktitle={Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning},\n year={2012}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n\nNote that each GLUE dataset has its own citation. Please see the source to see\nthe correct citation for each contained dataset.",
741
+ "homepage": "https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WS.html",
742
+ "license": "",
743
+ "features": {
744
+ "sentence1": {
745
+ "dtype": "string",
746
+ "id": null,
747
+ "_type": "Value"
748
+ },
749
+ "sentence2": {
750
+ "dtype": "string",
751
+ "id": null,
752
+ "_type": "Value"
753
+ },
754
+ "label": {
755
+ "num_classes": 2,
756
+ "names": [
757
+ "not_entailment",
758
+ "entailment"
759
+ ],
760
+ "names_file": null,
761
+ "id": null,
762
+ "_type": "ClassLabel"
763
+ },
764
+ "idx": {
765
+ "dtype": "int32",
766
+ "id": null,
767
+ "_type": "Value"
768
+ }
769
+ },
770
+ "post_processed": null,
771
+ "supervised_keys": null,
772
+ "builder_name": "glue",
773
+ "config_name": "wnli",
774
+ "version": {
775
+ "version_str": "1.0.0",
776
+ "description": "",
777
+ "major": 1,
778
+ "minor": 0,
779
+ "patch": 0
780
+ },
781
+ "splits": {
782
+ "test": {
783
+ "name": "test",
784
+ "num_bytes": 37992,
785
+ "num_examples": 146,
786
+ "dataset_name": "glue"
787
+ },
788
+ "train": {
789
+ "name": "train",
790
+ "num_bytes": 107517,
791
+ "num_examples": 635,
792
+ "dataset_name": "glue"
793
+ },
794
+ "validation": {
795
+ "name": "validation",
796
+ "num_bytes": 12215,
797
+ "num_examples": 71,
798
+ "dataset_name": "glue"
799
+ }
800
+ },
801
+ "download_checksums": {
802
+ "https://dl.fbaipublicfiles.com/glue/data/WNLI.zip": {
803
+ "num_bytes": 28999,
804
+ "checksum": "ae0e8e4d16f4d46d4a0a566ec7ecceccfd3fbfaa4a7a4b4e02848c0f2561ac46"
805
+ }
806
+ },
807
+ "download_size": 28999,
808
+ "post_processing_size": null,
809
+ "dataset_size": 157724,
810
+ "size_in_bytes": 186723
811
+ },
812
+ "ax": {
813
+ "description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n",
814
+ "citation": "\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n\nNote that each GLUE dataset has its own citation. Please see the source to see\nthe correct citation for each contained dataset.",
815
+ "homepage": "https://gluebenchmark.com/diagnostics",
816
+ "license": "",
817
+ "features": {
818
+ "premise": {
819
+ "dtype": "string",
820
+ "id": null,
821
+ "_type": "Value"
822
+ },
823
+ "hypothesis": {
824
+ "dtype": "string",
825
+ "id": null,
826
+ "_type": "Value"
827
+ },
828
+ "label": {
829
+ "num_classes": 3,
830
+ "names": [
831
+ "entailment",
832
+ "neutral",
833
+ "contradiction"
834
+ ],
835
+ "names_file": null,
836
+ "id": null,
837
+ "_type": "ClassLabel"
838
+ },
839
+ "idx": {
840
+ "dtype": "int32",
841
+ "id": null,
842
+ "_type": "Value"
843
+ }
844
+ },
845
+ "post_processed": null,
846
+ "supervised_keys": null,
847
+ "builder_name": "glue",
848
+ "config_name": "ax",
849
+ "version": {
850
+ "version_str": "1.0.0",
851
+ "description": "",
852
+ "major": 1,
853
+ "minor": 0,
854
+ "patch": 0
855
+ },
856
+ "splits": {
857
+ "test": {
858
+ "name": "test",
859
+ "num_bytes": 238392,
860
+ "num_examples": 1104,
861
+ "dataset_name": "glue"
862
+ }
863
+ },
864
+ "download_checksums": {
865
+ "https://dl.fbaipublicfiles.com/glue/data/AX.tsv": {
866
+ "num_bytes": 222257,
867
+ "checksum": "0e13510b1bb14436ff7e2ee82338f0efb0133ecf2e73507a697dc210db3f05fd"
868
+ }
869
+ },
870
+ "download_size": 222257,
871
+ "post_processing_size": null,
872
+ "dataset_size": 238392,
873
+ "size_in_bytes": 460649
874
+ }
875
+ }
dummy/ax/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2a34cfe9a95b80530887f488eb04e3514b322e0fa65c64f425ddb7aea449f69
3
+ size 509
dummy/cola/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d678797c6eb84d3436868f8b5ac506f88f12bd51633245bd1a20af6021ac48d4
3
+ size 1116
dummy/mnli/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef46936124ebde31577df53b2ae6e381aa9c66e95a2cf50f42ba68478ec3896e
3
+ size 5438
dummy/mrpc/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0bfe41b0047215524032750c1faf32c84c41566279fca9df1c35482640537aa6
3
+ size 4539
dummy/qnli/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a771b312be26048e7d921ff4bf01ac7de224641cd51977629bb54b9839637fb0
3
+ size 1859
dummy/qqp/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a1f6bf7c3ae0587a99d4ecfc2c4ab900efbd23dc1c68e2556426da9feab0163
3
+ size 1588
dummy/rte/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7bec2e7562503a3b7ef577986b4cd10b075818b66fb03df8d4dec79d28a5bf5f
3
+ size 1613
dummy/sst2/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ff05ebd2679fd60f174cd19415e8dd0c2f701f49f8f9dbb63f7b30707d9b06e
3
+ size 1143
dummy/stsb/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8027e1188e092ea53eede8a2b2bd245f4c98f2b37132ea5d7dd173bac36e025e
3
+ size 1353
dummy/wnli/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e52960c15224df1f7202371029b3a5fad3b4dfec72132d3c8b996ff03db92755
3
+ size 1407
glue.py ADDED
@@ -0,0 +1,629 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Lint as: python3
17
+ """The General Language Understanding Evaluation (GLUE) benchmark."""
18
+
19
+
20
+ import csv
21
+ import os
22
+ import textwrap
23
+
24
+ import numpy as np
25
+
26
+ import datasets
27
+
28
+
29
+ _GLUE_CITATION = """\
30
+ @inproceedings{wang2019glue,
31
+ title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},
32
+ author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},
33
+ note={In the Proceedings of ICLR.},
34
+ year={2019}
35
+ }
36
+ """
37
+
38
+ _GLUE_DESCRIPTION = """\
39
+ GLUE, the General Language Understanding Evaluation benchmark
40
+ (https://gluebenchmark.com/) is a collection of resources for training,
41
+ evaluating, and analyzing natural language understanding systems.
42
+
43
+ """
44
+
45
+ _MRPC_DEV_IDS = "https://dl.fbaipublicfiles.com/glue/data/mrpc_dev_ids.tsv"
46
+ _MRPC_TRAIN = "https://huggingface.co/datasets/evaluate/glue-ci/resolve/main/msr_paraphrase_test.txt" #"https://dl.fbaipublicfiles.com/senteval/senteval_data/msr_paraphrase_train.txt"
47
+ _MRPC_TEST = "https://huggingface.co/datasets/evaluate/glue-ci/resolve/main/msr_paraphrase_test.txt"
48
+
49
+ _MNLI_BASE_KWARGS = dict(
50
+ text_features={
51
+ "premise": "sentence1",
52
+ "hypothesis": "sentence2",
53
+ },
54
+ label_classes=["entailment", "neutral", "contradiction"],
55
+ label_column="gold_label",
56
+ data_url="https://dl.fbaipublicfiles.com/glue/data/MNLI.zip",
57
+ data_dir="MNLI",
58
+ citation=textwrap.dedent(
59
+ """\
60
+ @InProceedings{N18-1101,
61
+ author = "Williams, Adina
62
+ and Nangia, Nikita
63
+ and Bowman, Samuel",
64
+ title = "A Broad-Coverage Challenge Corpus for
65
+ Sentence Understanding through Inference",
66
+ booktitle = "Proceedings of the 2018 Conference of
67
+ the North American Chapter of the
68
+ Association for Computational Linguistics:
69
+ Human Language Technologies, Volume 1 (Long
70
+ Papers)",
71
+ year = "2018",
72
+ publisher = "Association for Computational Linguistics",
73
+ pages = "1112--1122",
74
+ location = "New Orleans, Louisiana",
75
+ url = "http://aclweb.org/anthology/N18-1101"
76
+ }
77
+ @article{bowman2015large,
78
+ title={A large annotated corpus for learning natural language inference},
79
+ author={Bowman, Samuel R and Angeli, Gabor and Potts, Christopher and Manning, Christopher D},
80
+ journal={arXiv preprint arXiv:1508.05326},
81
+ year={2015}
82
+ }"""
83
+ ),
84
+ url="http://www.nyu.edu/projects/bowman/multinli/",
85
+ )
86
+
87
+
88
+ class GlueConfig(datasets.BuilderConfig):
89
+ """BuilderConfig for GLUE."""
90
+
91
+ def __init__(
92
+ self,
93
+ text_features,
94
+ label_column,
95
+ data_url,
96
+ data_dir,
97
+ citation,
98
+ url,
99
+ label_classes=None,
100
+ process_label=lambda x: x,
101
+ **kwargs,
102
+ ):
103
+ """BuilderConfig for GLUE.
104
+
105
+ Args:
106
+ text_features: `dict[string, string]`, map from the name of the feature
107
+ dict for each text field to the name of the column in the tsv file
108
+ label_column: `string`, name of the column in the tsv file corresponding
109
+ to the label
110
+ data_url: `string`, url to download the zip file from
111
+ data_dir: `string`, the path to the folder containing the tsv files in the
112
+ downloaded zip
113
+ citation: `string`, citation for the data set
114
+ url: `string`, url for information about the data set
115
+ label_classes: `list[string]`, the list of classes if the label is
116
+ categorical. If not provided, then the label will be of type
117
+ `datasets.Value('float32')`.
118
+ process_label: `Function[string, any]`, function taking in the raw value
119
+ of the label and processing it to the form required by the label feature
120
+ **kwargs: keyword arguments forwarded to super.
121
+ """
122
+ super(GlueConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
123
+ self.text_features = text_features
124
+ self.label_column = label_column
125
+ self.label_classes = label_classes
126
+ self.data_url = data_url
127
+ self.data_dir = data_dir
128
+ self.citation = citation
129
+ self.url = url
130
+ self.process_label = process_label
131
+
132
+
133
+ class Glue(datasets.GeneratorBasedBuilder):
134
+ """The General Language Understanding Evaluation (GLUE) benchmark."""
135
+
136
+ BUILDER_CONFIGS = [
137
+ GlueConfig(
138
+ name="cola",
139
+ description=textwrap.dedent(
140
+ """\
141
+ The Corpus of Linguistic Acceptability consists of English
142
+ acceptability judgments drawn from books and journal articles on
143
+ linguistic theory. Each example is a sequence of words annotated
144
+ with whether it is a grammatical English sentence."""
145
+ ),
146
+ text_features={"sentence": "sentence"},
147
+ label_classes=["unacceptable", "acceptable"],
148
+ label_column="is_acceptable",
149
+ data_url="https://dl.fbaipublicfiles.com/glue/data/CoLA.zip",
150
+ data_dir="CoLA",
151
+ citation=textwrap.dedent(
152
+ """\
153
+ @article{warstadt2018neural,
154
+ title={Neural Network Acceptability Judgments},
155
+ author={Warstadt, Alex and Singh, Amanpreet and Bowman, Samuel R},
156
+ journal={arXiv preprint arXiv:1805.12471},
157
+ year={2018}
158
+ }"""
159
+ ),
160
+ url="https://nyu-mll.github.io/CoLA/",
161
+ ),
162
+ GlueConfig(
163
+ name="sst2",
164
+ description=textwrap.dedent(
165
+ """\
166
+ The Stanford Sentiment Treebank consists of sentences from movie reviews and
167
+ human annotations of their sentiment. The task is to predict the sentiment of a
168
+ given sentence. We use the two-way (positive/negative) class split, and use only
169
+ sentence-level labels."""
170
+ ),
171
+ text_features={"sentence": "sentence"},
172
+ label_classes=["negative", "positive"],
173
+ label_column="label",
174
+ data_url="https://dl.fbaipublicfiles.com/glue/data/SST-2.zip",
175
+ data_dir="SST-2",
176
+ citation=textwrap.dedent(
177
+ """\
178
+ @inproceedings{socher2013recursive,
179
+ title={Recursive deep models for semantic compositionality over a sentiment treebank},
180
+ author={Socher, Richard and Perelygin, Alex and Wu, Jean and Chuang, Jason and Manning, Christopher D and Ng, Andrew and Potts, Christopher},
181
+ booktitle={Proceedings of the 2013 conference on empirical methods in natural language processing},
182
+ pages={1631--1642},
183
+ year={2013}
184
+ }"""
185
+ ),
186
+ url="https://datasets.stanford.edu/sentiment/index.html",
187
+ ),
188
+ GlueConfig(
189
+ name="mrpc",
190
+ description=textwrap.dedent(
191
+ """\
192
+ The Microsoft Research Paraphrase Corpus (Dolan & Brockett, 2005) is a corpus of
193
+ sentence pairs automatically extracted from online news sources, with human annotations
194
+ for whether the sentences in the pair are semantically equivalent."""
195
+ ), # pylint: disable=line-too-long
196
+ text_features={"sentence1": "", "sentence2": ""},
197
+ label_classes=["not_equivalent", "equivalent"],
198
+ label_column="Quality",
199
+ data_url="", # MRPC isn't hosted by GLUE.
200
+ data_dir="MRPC",
201
+ citation=textwrap.dedent(
202
+ """\
203
+ @inproceedings{dolan2005automatically,
204
+ title={Automatically constructing a corpus of sentential paraphrases},
205
+ author={Dolan, William B and Brockett, Chris},
206
+ booktitle={Proceedings of the Third International Workshop on Paraphrasing (IWP2005)},
207
+ year={2005}
208
+ }"""
209
+ ),
210
+ url="https://www.microsoft.com/en-us/download/details.aspx?id=52398",
211
+ ),
212
+ GlueConfig(
213
+ name="qqp",
214
+ description=textwrap.dedent(
215
+ """\
216
+ The Quora Question Pairs2 dataset is a collection of question pairs from the
217
+ community question-answering website Quora. The task is to determine whether a
218
+ pair of questions are semantically equivalent."""
219
+ ),
220
+ text_features={
221
+ "question1": "question1",
222
+ "question2": "question2",
223
+ },
224
+ label_classes=["not_duplicate", "duplicate"],
225
+ label_column="is_duplicate",
226
+ data_url="https://dl.fbaipublicfiles.com/glue/data/QQP-clean.zip",
227
+ data_dir="QQP",
228
+ citation=textwrap.dedent(
229
+ """\
230
+ @online{WinNT,
231
+ author = {Iyer, Shankar and Dandekar, Nikhil and Csernai, Kornel},
232
+ title = {First Quora Dataset Release: Question Pairs},
233
+ year = {2017},
234
+ url = {https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs},
235
+ urldate = {2019-04-03}
236
+ }"""
237
+ ),
238
+ url="https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs",
239
+ ),
240
+ GlueConfig(
241
+ name="stsb",
242
+ description=textwrap.dedent(
243
+ """\
244
+ The Semantic Textual Similarity Benchmark (Cer et al., 2017) is a collection of
245
+ sentence pairs drawn from news headlines, video and image captions, and natural
246
+ language inference data. Each pair is human-annotated with a similarity score
247
+ from 1 to 5."""
248
+ ),
249
+ text_features={
250
+ "sentence1": "sentence1",
251
+ "sentence2": "sentence2",
252
+ },
253
+ label_column="score",
254
+ data_url="https://dl.fbaipublicfiles.com/glue/data/STS-B.zip",
255
+ data_dir="STS-B",
256
+ citation=textwrap.dedent(
257
+ """\
258
+ @article{cer2017semeval,
259
+ title={Semeval-2017 task 1: Semantic textual similarity-multilingual and cross-lingual focused evaluation},
260
+ author={Cer, Daniel and Diab, Mona and Agirre, Eneko and Lopez-Gazpio, Inigo and Specia, Lucia},
261
+ journal={arXiv preprint arXiv:1708.00055},
262
+ year={2017}
263
+ }"""
264
+ ),
265
+ url="http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark",
266
+ process_label=np.float32,
267
+ ),
268
+ GlueConfig(
269
+ name="mnli",
270
+ description=textwrap.dedent(
271
+ """\
272
+ The Multi-Genre Natural Language Inference Corpus is a crowdsourced
273
+ collection of sentence pairs with textual entailment annotations. Given a premise sentence
274
+ and a hypothesis sentence, the task is to predict whether the premise entails the hypothesis
275
+ (entailment), contradicts the hypothesis (contradiction), or neither (neutral). The premise sentences are
276
+ gathered from ten different sources, including transcribed speech, fiction, and government reports.
277
+ We use the standard test set, for which we obtained private labels from the authors, and evaluate
278
+ on both the matched (in-domain) and mismatched (cross-domain) section. We also use and recommend
279
+ the SNLI corpus as 550k examples of auxiliary training data."""
280
+ ),
281
+ **_MNLI_BASE_KWARGS,
282
+ ),
283
+ GlueConfig(
284
+ name="mnli_mismatched",
285
+ description=textwrap.dedent(
286
+ """\
287
+ The mismatched validation and test splits from MNLI.
288
+ See the "mnli" BuilderConfig for additional information."""
289
+ ),
290
+ **_MNLI_BASE_KWARGS,
291
+ ),
292
+ GlueConfig(
293
+ name="mnli_matched",
294
+ description=textwrap.dedent(
295
+ """\
296
+ The matched validation and test splits from MNLI.
297
+ See the "mnli" BuilderConfig for additional information."""
298
+ ),
299
+ **_MNLI_BASE_KWARGS,
300
+ ),
301
+ GlueConfig(
302
+ name="qnli",
303
+ description=textwrap.dedent(
304
+ """\
305
+ The Stanford Question Answering Dataset is a question-answering
306
+ dataset consisting of question-paragraph pairs, where one of the sentences in the paragraph (drawn
307
+ from Wikipedia) contains the answer to the corresponding question (written by an annotator). We
308
+ convert the task into sentence pair classification by forming a pair between each question and each
309
+ sentence in the corresponding context, and filtering out pairs with low lexical overlap between the
310
+ question and the context sentence. The task is to determine whether the context sentence contains
311
+ the answer to the question. This modified version of the original task removes the requirement that
312
+ the model select the exact answer, but also removes the simplifying assumptions that the answer
313
+ is always present in the input and that lexical overlap is a reliable cue."""
314
+ ), # pylint: disable=line-too-long
315
+ text_features={
316
+ "question": "question",
317
+ "sentence": "sentence",
318
+ },
319
+ label_classes=["entailment", "not_entailment"],
320
+ label_column="label",
321
+ data_url="https://dl.fbaipublicfiles.com/glue/data/QNLIv2.zip",
322
+ data_dir="QNLI",
323
+ citation=textwrap.dedent(
324
+ """\
325
+ @article{rajpurkar2016squad,
326
+ title={Squad: 100,000+ questions for machine comprehension of text},
327
+ author={Rajpurkar, Pranav and Zhang, Jian and Lopyrev, Konstantin and Liang, Percy},
328
+ journal={arXiv preprint arXiv:1606.05250},
329
+ year={2016}
330
+ }"""
331
+ ),
332
+ url="https://rajpurkar.github.io/SQuAD-explorer/",
333
+ ),
334
+ GlueConfig(
335
+ name="rte",
336
+ description=textwrap.dedent(
337
+ """\
338
+ The Recognizing Textual Entailment (RTE) datasets come from a series of annual textual
339
+ entailment challenges. We combine the data from RTE1 (Dagan et al., 2006), RTE2 (Bar Haim
340
+ et al., 2006), RTE3 (Giampiccolo et al., 2007), and RTE5 (Bentivogli et al., 2009).4 Examples are
341
+ constructed based on news and Wikipedia text. We convert all datasets to a two-class split, where
342
+ for three-class datasets we collapse neutral and contradiction into not entailment, for consistency."""
343
+ ), # pylint: disable=line-too-long
344
+ text_features={
345
+ "sentence1": "sentence1",
346
+ "sentence2": "sentence2",
347
+ },
348
+ label_classes=["entailment", "not_entailment"],
349
+ label_column="label",
350
+ data_url="https://dl.fbaipublicfiles.com/glue/data/RTE.zip",
351
+ data_dir="RTE",
352
+ citation=textwrap.dedent(
353
+ """\
354
+ @inproceedings{dagan2005pascal,
355
+ title={The PASCAL recognising textual entailment challenge},
356
+ author={Dagan, Ido and Glickman, Oren and Magnini, Bernardo},
357
+ booktitle={Machine Learning Challenges Workshop},
358
+ pages={177--190},
359
+ year={2005},
360
+ organization={Springer}
361
+ }
362
+ @inproceedings{bar2006second,
363
+ title={The second pascal recognising textual entailment challenge},
364
+ author={Bar-Haim, Roy and Dagan, Ido and Dolan, Bill and Ferro, Lisa and Giampiccolo, Danilo and Magnini, Bernardo and Szpektor, Idan},
365
+ booktitle={Proceedings of the second PASCAL challenges workshop on recognising textual entailment},
366
+ volume={6},
367
+ number={1},
368
+ pages={6--4},
369
+ year={2006},
370
+ organization={Venice}
371
+ }
372
+ @inproceedings{giampiccolo2007third,
373
+ title={The third pascal recognizing textual entailment challenge},
374
+ author={Giampiccolo, Danilo and Magnini, Bernardo and Dagan, Ido and Dolan, Bill},
375
+ booktitle={Proceedings of the ACL-PASCAL workshop on textual entailment and paraphrasing},
376
+ pages={1--9},
377
+ year={2007},
378
+ organization={Association for Computational Linguistics}
379
+ }
380
+ @inproceedings{bentivogli2009fifth,
381
+ title={The Fifth PASCAL Recognizing Textual Entailment Challenge.},
382
+ author={Bentivogli, Luisa and Clark, Peter and Dagan, Ido and Giampiccolo, Danilo},
383
+ booktitle={TAC},
384
+ year={2009}
385
+ }"""
386
+ ),
387
+ url="https://aclweb.org/aclwiki/Recognizing_Textual_Entailment",
388
+ ),
389
+ GlueConfig(
390
+ name="wnli",
391
+ description=textwrap.dedent(
392
+ """\
393
+ The Winograd Schema Challenge (Levesque et al., 2011) is a reading comprehension task
394
+ in which a system must read a sentence with a pronoun and select the referent of that pronoun from
395
+ a list of choices. The examples are manually constructed to foil simple statistical methods: Each
396
+ one is contingent on contextual information provided by a single word or phrase in the sentence.
397
+ To convert the problem into sentence pair classification, we construct sentence pairs by replacing
398
+ the ambiguous pronoun with each possible referent. The task is to predict if the sentence with the
399
+ pronoun substituted is entailed by the original sentence. We use a small evaluation set consisting of
400
+ new examples derived from fiction books that was shared privately by the authors of the original
401
+ corpus. While the included training set is balanced between two classes, the test set is imbalanced
402
+ between them (65% not entailment). Also, due to a data quirk, the development set is adversarial:
403
+ hypotheses are sometimes shared between training and development examples, so if a model memorizes the
404
+ training examples, they will predict the wrong label on corresponding development set
405
+ example. As with QNLI, each example is evaluated separately, so there is not a systematic correspondence
406
+ between a model's score on this task and its score on the unconverted original task. We
407
+ call converted dataset WNLI (Winograd NLI)."""
408
+ ),
409
+ text_features={
410
+ "sentence1": "sentence1",
411
+ "sentence2": "sentence2",
412
+ },
413
+ label_classes=["not_entailment", "entailment"],
414
+ label_column="label",
415
+ data_url="https://dl.fbaipublicfiles.com/glue/data/WNLI.zip",
416
+ data_dir="WNLI",
417
+ citation=textwrap.dedent(
418
+ """\
419
+ @inproceedings{levesque2012winograd,
420
+ title={The winograd schema challenge},
421
+ author={Levesque, Hector and Davis, Ernest and Morgenstern, Leora},
422
+ booktitle={Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning},
423
+ year={2012}
424
+ }"""
425
+ ),
426
+ url="https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WS.html",
427
+ ),
428
+ GlueConfig(
429
+ name="ax",
430
+ description=textwrap.dedent(
431
+ """\
432
+ A manually-curated evaluation dataset for fine-grained analysis of
433
+ system performance on a broad range of linguistic phenomena. This
434
+ dataset evaluates sentence understanding through Natural Language
435
+ Inference (NLI) problems. Use a model trained on MulitNLI to produce
436
+ predictions for this dataset."""
437
+ ),
438
+ text_features={
439
+ "premise": "sentence1",
440
+ "hypothesis": "sentence2",
441
+ },
442
+ label_classes=["entailment", "neutral", "contradiction"],
443
+ label_column="", # No label since we only have test set.
444
+ # We must use a URL shortener since the URL from GLUE is very long and
445
+ # causes issues in TFDS.
446
+ data_url="https://dl.fbaipublicfiles.com/glue/data/AX.tsv",
447
+ data_dir="", # We are downloading a tsv.
448
+ citation="", # The GLUE citation is sufficient.
449
+ url="https://gluebenchmark.com/diagnostics",
450
+ ),
451
+ ]
452
+
453
+ def _info(self):
454
+ features = {text_feature: datasets.Value("string") for text_feature in self.config.text_features.keys()}
455
+ if self.config.label_classes:
456
+ features["label"] = datasets.features.ClassLabel(names=self.config.label_classes)
457
+ else:
458
+ features["label"] = datasets.Value("float32")
459
+ features["idx"] = datasets.Value("int32")
460
+ return datasets.DatasetInfo(
461
+ description=_GLUE_DESCRIPTION,
462
+ features=datasets.Features(features),
463
+ homepage=self.config.url,
464
+ citation=self.config.citation + "\n" + _GLUE_CITATION,
465
+ )
466
+
467
+ def _split_generators(self, dl_manager):
468
+ if self.config.name == "ax":
469
+ data_file = dl_manager.download(self.config.data_url)
470
+ return [
471
+ datasets.SplitGenerator(
472
+ name=datasets.Split.TEST,
473
+ gen_kwargs={
474
+ "data_file": data_file,
475
+ "split": "test",
476
+ },
477
+ )
478
+ ]
479
+
480
+ if self.config.name == "mrpc":
481
+ data_dir = None
482
+ mrpc_files = {"dev_ids": _MRPC_DEV_IDS, "train": _MRPC_TEST, "test": _MRPC_TEST}
483
+ # mrpc_files = dl_manager.download(
484
+ # {
485
+ # "dev_ids": _MRPC_DEV_IDS,
486
+ # "train": _MRPC_TRAIN,
487
+ # "test": _MRPC_TEST,
488
+ # }
489
+ # )
490
+ else:
491
+ dl_dir = dl_manager.download_and_extract(self.config.data_url)
492
+ data_dir = os.path.join(dl_dir, self.config.data_dir)
493
+ mrpc_files = None
494
+ train_split = datasets.SplitGenerator(
495
+ name=datasets.Split.TRAIN,
496
+ gen_kwargs={
497
+ "data_file": os.path.join(data_dir or "", "train.tsv"),
498
+ "split": "train",
499
+ "mrpc_files": mrpc_files,
500
+ },
501
+ )
502
+ if self.config.name == "mnli":
503
+ return [
504
+ train_split,
505
+ _mnli_split_generator("validation_matched", data_dir, "dev", matched=True),
506
+ _mnli_split_generator("validation_mismatched", data_dir, "dev", matched=False),
507
+ _mnli_split_generator("test_matched", data_dir, "test", matched=True),
508
+ _mnli_split_generator("test_mismatched", data_dir, "test", matched=False),
509
+ ]
510
+ elif self.config.name == "mnli_matched":
511
+ return [
512
+ _mnli_split_generator("validation", data_dir, "dev", matched=True),
513
+ _mnli_split_generator("test", data_dir, "test", matched=True),
514
+ ]
515
+ elif self.config.name == "mnli_mismatched":
516
+ return [
517
+ _mnli_split_generator("validation", data_dir, "dev", matched=False),
518
+ _mnli_split_generator("test", data_dir, "test", matched=False),
519
+ ]
520
+ else:
521
+ return [
522
+ train_split,
523
+ datasets.SplitGenerator(
524
+ name=datasets.Split.VALIDATION,
525
+ gen_kwargs={
526
+ "data_file": os.path.join(data_dir or "", "dev.tsv"),
527
+ "split": "dev",
528
+ "mrpc_files": mrpc_files,
529
+ },
530
+ ),
531
+ datasets.SplitGenerator(
532
+ name=datasets.Split.TEST,
533
+ gen_kwargs={
534
+ "data_file": os.path.join(data_dir or "", "test.tsv"),
535
+ "split": "test",
536
+ "mrpc_files": mrpc_files,
537
+ },
538
+ ),
539
+ ]
540
+
541
+ def _generate_examples(self, data_file, split, mrpc_files=None):
542
+ if self.config.name == "mrpc":
543
+ # We have to prepare the MRPC dataset from the original sources ourselves.
544
+ examples = self._generate_example_mrpc_files(mrpc_files=mrpc_files, split=split)
545
+ for example in examples:
546
+ yield example["idx"], example
547
+ else:
548
+ process_label = self.config.process_label
549
+ label_classes = self.config.label_classes
550
+
551
+ # The train and dev files for CoLA are the only tsv files without a
552
+ # header.
553
+ is_cola_non_test = self.config.name == "cola" and split != "test"
554
+
555
+ with open(data_file, encoding="utf8") as f:
556
+ reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
557
+ if is_cola_non_test:
558
+ reader = csv.reader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
559
+
560
+ for n, row in enumerate(reader):
561
+ if is_cola_non_test:
562
+ row = {
563
+ "sentence": row[3],
564
+ "is_acceptable": row[1],
565
+ }
566
+
567
+ example = {feat: row[col] for feat, col in self.config.text_features.items()}
568
+ example["idx"] = n
569
+
570
+ if self.config.label_column in row:
571
+ label = row[self.config.label_column]
572
+ # For some tasks, the label is represented as 0 and 1 in the tsv
573
+ # files and needs to be cast to integer to work with the feature.
574
+ if label_classes and label not in label_classes:
575
+ label = int(label) if label else None
576
+ example["label"] = process_label(label)
577
+ else:
578
+ example["label"] = process_label(-1)
579
+
580
+ # Filter out corrupted rows.
581
+ for value in example.values():
582
+ if value is None:
583
+ break
584
+ else:
585
+ yield example["idx"], example
586
+
587
+ def _generate_example_mrpc_files(self, mrpc_files, split):
588
+ if split == "test":
589
+ with open(mrpc_files["test"], encoding="utf8") as f:
590
+ # The first 3 bytes are the utf-8 BOM \xef\xbb\xbf, which messes with
591
+ # the Quality key.
592
+ f.seek(3)
593
+ reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
594
+ for n, row in enumerate(reader):
595
+ yield {
596
+ "sentence1": row["#1 String"],
597
+ "sentence2": row["#2 String"],
598
+ "label": int(row["Quality"]),
599
+ "idx": n,
600
+ }
601
+ else:
602
+ with open(mrpc_files["dev_ids"], encoding="utf8") as f:
603
+ reader = csv.reader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
604
+ dev_ids = [[row[0], row[1]] for row in reader]
605
+ with open(mrpc_files["train"], encoding="utf8") as f:
606
+ # The first 3 bytes are the utf-8 BOM \xef\xbb\xbf, which messes with
607
+ # the Quality key.
608
+ f.seek(3)
609
+ reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
610
+ for n, row in enumerate(reader):
611
+ is_row_in_dev = [row["#1 ID"], row["#2 ID"]] in dev_ids
612
+ if is_row_in_dev == (split == "dev"):
613
+ yield {
614
+ "sentence1": row["#1 String"],
615
+ "sentence2": row["#2 String"],
616
+ "label": int(row["Quality"]),
617
+ "idx": n,
618
+ }
619
+
620
+
621
+ def _mnli_split_generator(name, data_dir, split, matched):
622
+ return datasets.SplitGenerator(
623
+ name=name,
624
+ gen_kwargs={
625
+ "data_file": os.path.join(data_dir, "%s_%s.tsv" % (split, "matched" if matched else "mismatched")),
626
+ "split": split,
627
+ "mrpc_files": None,
628
+ },
629
+ )