Datasets:
Tasks:
Image Classification
Modalities:
Image
Formats:
parquet
Sub-tasks:
multi-class-image-classification
Languages:
English
Size:
100K - 1M
License:
Commit
•
a050edb
1
Parent(s):
d420fa6
Delete legacy dataset_infos.json
Browse files- dataset_infos.json +0 -155
dataset_infos.json
DELETED
@@ -1,155 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"default": {
|
3 |
-
"description": "This dataset consists of 101 food categories, with 101'000 images. For each class, 250 manually reviewed test images are provided as well as 750 training images. On purpose, the training images were not cleaned, and thus still contain some amount of noise. This comes mostly in the form of intense colors and sometimes wrong labels. All images were rescaled to have a maximum side length of 512 pixels.",
|
4 |
-
"citation": " @inproceedings{bossard14,\n title = {Food-101 -- Mining Discriminative Components with Random Forests},\n author = {Bossard, Lukas and Guillaumin, Matthieu and Van Gool, Luc},\n booktitle = {European Conference on Computer Vision},\n year = {2014}\n}\n",
|
5 |
-
"homepage": "https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/",
|
6 |
-
"license": "LICENSE AGREEMENT\n=================\n - The Food-101 data set consists of images from Foodspotting [1] which are not\n property of the Federal Institute of Technology Zurich (ETHZ). Any use beyond\n scientific fair use must be negociated with the respective picture owners\n according to the Foodspotting terms of use [2].\n\n[1] http://www.foodspotting.com/\n[2] http://www.foodspotting.com/terms/\n",
|
7 |
-
"features": {
|
8 |
-
"image": {
|
9 |
-
"_type": "Image"
|
10 |
-
},
|
11 |
-
"label": {
|
12 |
-
"names": [
|
13 |
-
"apple_pie",
|
14 |
-
"baby_back_ribs",
|
15 |
-
"baklava",
|
16 |
-
"beef_carpaccio",
|
17 |
-
"beef_tartare",
|
18 |
-
"beet_salad",
|
19 |
-
"beignets",
|
20 |
-
"bibimbap",
|
21 |
-
"bread_pudding",
|
22 |
-
"breakfast_burrito",
|
23 |
-
"bruschetta",
|
24 |
-
"caesar_salad",
|
25 |
-
"cannoli",
|
26 |
-
"caprese_salad",
|
27 |
-
"carrot_cake",
|
28 |
-
"ceviche",
|
29 |
-
"cheesecake",
|
30 |
-
"cheese_plate",
|
31 |
-
"chicken_curry",
|
32 |
-
"chicken_quesadilla",
|
33 |
-
"chicken_wings",
|
34 |
-
"chocolate_cake",
|
35 |
-
"chocolate_mousse",
|
36 |
-
"churros",
|
37 |
-
"clam_chowder",
|
38 |
-
"club_sandwich",
|
39 |
-
"crab_cakes",
|
40 |
-
"creme_brulee",
|
41 |
-
"croque_madame",
|
42 |
-
"cup_cakes",
|
43 |
-
"deviled_eggs",
|
44 |
-
"donuts",
|
45 |
-
"dumplings",
|
46 |
-
"edamame",
|
47 |
-
"eggs_benedict",
|
48 |
-
"escargots",
|
49 |
-
"falafel",
|
50 |
-
"filet_mignon",
|
51 |
-
"fish_and_chips",
|
52 |
-
"foie_gras",
|
53 |
-
"french_fries",
|
54 |
-
"french_onion_soup",
|
55 |
-
"french_toast",
|
56 |
-
"fried_calamari",
|
57 |
-
"fried_rice",
|
58 |
-
"frozen_yogurt",
|
59 |
-
"garlic_bread",
|
60 |
-
"gnocchi",
|
61 |
-
"greek_salad",
|
62 |
-
"grilled_cheese_sandwich",
|
63 |
-
"grilled_salmon",
|
64 |
-
"guacamole",
|
65 |
-
"gyoza",
|
66 |
-
"hamburger",
|
67 |
-
"hot_and_sour_soup",
|
68 |
-
"hot_dog",
|
69 |
-
"huevos_rancheros",
|
70 |
-
"hummus",
|
71 |
-
"ice_cream",
|
72 |
-
"lasagna",
|
73 |
-
"lobster_bisque",
|
74 |
-
"lobster_roll_sandwich",
|
75 |
-
"macaroni_and_cheese",
|
76 |
-
"macarons",
|
77 |
-
"miso_soup",
|
78 |
-
"mussels",
|
79 |
-
"nachos",
|
80 |
-
"omelette",
|
81 |
-
"onion_rings",
|
82 |
-
"oysters",
|
83 |
-
"pad_thai",
|
84 |
-
"paella",
|
85 |
-
"pancakes",
|
86 |
-
"panna_cotta",
|
87 |
-
"peking_duck",
|
88 |
-
"pho",
|
89 |
-
"pizza",
|
90 |
-
"pork_chop",
|
91 |
-
"poutine",
|
92 |
-
"prime_rib",
|
93 |
-
"pulled_pork_sandwich",
|
94 |
-
"ramen",
|
95 |
-
"ravioli",
|
96 |
-
"red_velvet_cake",
|
97 |
-
"risotto",
|
98 |
-
"samosa",
|
99 |
-
"sashimi",
|
100 |
-
"scallops",
|
101 |
-
"seaweed_salad",
|
102 |
-
"shrimp_and_grits",
|
103 |
-
"spaghetti_bolognese",
|
104 |
-
"spaghetti_carbonara",
|
105 |
-
"spring_rolls",
|
106 |
-
"steak",
|
107 |
-
"strawberry_shortcake",
|
108 |
-
"sushi",
|
109 |
-
"tacos",
|
110 |
-
"takoyaki",
|
111 |
-
"tiramisu",
|
112 |
-
"tuna_tartare",
|
113 |
-
"waffles"
|
114 |
-
],
|
115 |
-
"_type": "ClassLabel"
|
116 |
-
}
|
117 |
-
},
|
118 |
-
"supervised_keys": {
|
119 |
-
"input": "image",
|
120 |
-
"output": "label"
|
121 |
-
},
|
122 |
-
"task_templates": [
|
123 |
-
{
|
124 |
-
"task": "image-classification",
|
125 |
-
"label_column": "label"
|
126 |
-
}
|
127 |
-
],
|
128 |
-
"builder_name": "parquet",
|
129 |
-
"dataset_name": "food101",
|
130 |
-
"config_name": "default",
|
131 |
-
"version": {
|
132 |
-
"version_str": "0.0.0",
|
133 |
-
"major": 0,
|
134 |
-
"minor": 0,
|
135 |
-
"patch": 0
|
136 |
-
},
|
137 |
-
"splits": {
|
138 |
-
"train": {
|
139 |
-
"name": "train",
|
140 |
-
"num_bytes": 3842657187.0,
|
141 |
-
"num_examples": 75750,
|
142 |
-
"dataset_name": null
|
143 |
-
},
|
144 |
-
"validation": {
|
145 |
-
"name": "validation",
|
146 |
-
"num_bytes": 1275182340.5,
|
147 |
-
"num_examples": 25250,
|
148 |
-
"dataset_name": null
|
149 |
-
}
|
150 |
-
},
|
151 |
-
"download_size": 5059972308,
|
152 |
-
"dataset_size": 5117839527.5,
|
153 |
-
"size_in_bytes": 10177811835.5
|
154 |
-
}
|
155 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|