system HF staff commited on
Commit
1cf0fb8
0 Parent(s):

Update files from the datasets library (from 1.0.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.0.0

.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"default": {"description": "\nThe movie rationale dataset contains human annotated rationales for movie\nreviews.\n", "citation": "\n@unpublished{eraser2019,\n title = {ERASER: A Benchmark to Evaluate Rationalized NLP Models},\n author = {Jay DeYoung and Sarthak Jain and Nazneen Fatema Rajani and Eric Lehman and Caiming Xiong and Richard Socher and Byron C. Wallace}\n}\n@InProceedings{zaidan-eisner-piatko-2008:nips,\n author = {Omar F. Zaidan and Jason Eisner and Christine Piatko},\n title = {Machine Learning with Annotator Rationales to Reduce Annotation Cost},\n booktitle = {Proceedings of the NIPS*2008 Workshop on Cost Sensitive Learning},\n month = {December},\n year = {2008}\n}\n", "homepage": "http://www.cs.jhu.edu/~ozaidan/rationales/", "license": "", "features": {"review": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["NEG", "POS"], "names_file": null, "id": null, "_type": "ClassLabel"}, "evidences": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "supervised_keys": null, "builder_name": "movie_rationales", "config_name": "default", "version": {"version_str": "0.1.0", "description": null, "datasets_version_to_prepare": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 1046377, "num_examples": 199, "dataset_name": "movie_rationales"}, "train": {"name": "train", "num_bytes": 6853624, "num_examples": 1600, "dataset_name": "movie_rationales"}, "validation": {"name": "validation", "num_bytes": 830417, "num_examples": 200, "dataset_name": "movie_rationales"}}, "download_checksums": {"http://www.eraserbenchmark.com/zipped/movies.tar.gz": {"num_bytes": 3899487, "checksum": "66e18d4e6c9df9e9f5544572b0bfe92a39673f74ecbfc3859b46cedb2f5b2dee"}}, "download_size": 3899487, "dataset_size": 8730418, "size_in_bytes": 12629905}}
dummy/0.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7fd146b11e415369fbca2c0d51fdb5e0b459516b7c2712bf717d39859a2547c3
3
+ size 2390
movie_rationales.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Lint as: python3
17
+ """Movie reviews with human annotated rationales."""
18
+
19
+ from __future__ import absolute_import, division, print_function
20
+
21
+ import json
22
+ import os
23
+
24
+ import datasets
25
+
26
+
27
+ _CITATION = """
28
+ @unpublished{eraser2019,
29
+ title = {ERASER: A Benchmark to Evaluate Rationalized NLP Models},
30
+ author = {Jay DeYoung and Sarthak Jain and Nazneen Fatema Rajani and Eric Lehman and Caiming Xiong and Richard Socher and Byron C. Wallace}
31
+ }
32
+ @InProceedings{zaidan-eisner-piatko-2008:nips,
33
+ author = {Omar F. Zaidan and Jason Eisner and Christine Piatko},
34
+ title = {Machine Learning with Annotator Rationales to Reduce Annotation Cost},
35
+ booktitle = {Proceedings of the NIPS*2008 Workshop on Cost Sensitive Learning},
36
+ month = {December},
37
+ year = {2008}
38
+ }
39
+ """
40
+
41
+ _DESCRIPTION = """
42
+ The movie rationale dataset contains human annotated rationales for movie
43
+ reviews.
44
+ """
45
+
46
+ _DOWNLOAD_URL = "http://www.eraserbenchmark.com/zipped/movies.tar.gz"
47
+
48
+
49
+ class MovieRationales(datasets.GeneratorBasedBuilder):
50
+ """Movie reviews with human annotated rationales."""
51
+
52
+ VERSION = datasets.Version("0.1.0")
53
+
54
+ def _info(self):
55
+ return datasets.DatasetInfo(
56
+ description=_DESCRIPTION,
57
+ features=datasets.Features(
58
+ {
59
+ "review": datasets.Value("string"),
60
+ "label": datasets.features.ClassLabel(names=["NEG", "POS"]),
61
+ "evidences": datasets.features.Sequence(datasets.Value("string")),
62
+ }
63
+ ),
64
+ supervised_keys=None,
65
+ homepage="http://www.cs.jhu.edu/~ozaidan/rationales/",
66
+ citation=_CITATION,
67
+ )
68
+
69
+ def _split_generators(self, dl_manager):
70
+ """Returns SplitGenerators."""
71
+ dl_dir = dl_manager.download_and_extract(_DOWNLOAD_URL)
72
+ data_dir = os.path.join(dl_dir, "movies")
73
+
74
+ return [
75
+ datasets.SplitGenerator(
76
+ name=datasets.Split.TRAIN,
77
+ gen_kwargs={"data_dir": data_dir, "filepath": os.path.join(data_dir, "train.jsonl")},
78
+ ),
79
+ datasets.SplitGenerator(
80
+ name=datasets.Split.VALIDATION,
81
+ gen_kwargs={"data_dir": data_dir, "filepath": os.path.join(data_dir, "val.jsonl")},
82
+ ),
83
+ datasets.SplitGenerator(
84
+ name=datasets.Split.TEST,
85
+ gen_kwargs={"data_dir": data_dir, "filepath": os.path.join(data_dir, "test.jsonl")},
86
+ ),
87
+ ]
88
+
89
+ def _generate_examples(self, data_dir, filepath):
90
+ """Yields examples."""
91
+ reviews_dir = os.path.join(data_dir, "docs")
92
+
93
+ with open(filepath, encoding="utf-8") as f:
94
+ for line in f:
95
+ row = json.loads(line)
96
+ doc_id = row["annotation_id"]
97
+ review_file = os.path.join(reviews_dir, doc_id)
98
+ with open(review_file, encoding="utf-8") as f1:
99
+ review_text = f1.read()
100
+
101
+ evidences = []
102
+ for evidence in row["evidences"]:
103
+ for e in evidence:
104
+ evidences.append(e["text"])
105
+
106
+ yield doc_id, {
107
+ "review": review_text,
108
+ "label": row["classification"],
109
+ "evidences": evidences,
110
+ }