Datasets:
Tasks:
Text Classification
Sub-tasks:
sentiment-classification
Languages:
English
Size:
1K<n<10K
License:
# coding=utf-8 | |
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
"""Movie reviews with human annotated rationales.""" | |
import json | |
import datasets | |
_CITATION = """ | |
@unpublished{eraser2019, | |
title = {ERASER: A Benchmark to Evaluate Rationalized NLP Models}, | |
author = {Jay DeYoung and Sarthak Jain and Nazneen Fatema Rajani and Eric Lehman and Caiming Xiong and Richard Socher and Byron C. Wallace} | |
} | |
@InProceedings{zaidan-eisner-piatko-2008:nips, | |
author = {Omar F. Zaidan and Jason Eisner and Christine Piatko}, | |
title = {Machine Learning with Annotator Rationales to Reduce Annotation Cost}, | |
booktitle = {Proceedings of the NIPS*2008 Workshop on Cost Sensitive Learning}, | |
month = {December}, | |
year = {2008} | |
} | |
""" | |
_DESCRIPTION = """ | |
The movie rationale dataset contains human annotated rationales for movie | |
reviews. | |
""" | |
_DOWNLOAD_URL = "http://www.eraserbenchmark.com/zipped/movies.tar.gz" | |
class MovieRationales(datasets.GeneratorBasedBuilder): | |
"""Movie reviews with human annotated rationales.""" | |
VERSION = datasets.Version("0.1.0") | |
test_dummy_data = False # dummy data don't support having a specific order for the files in the archive | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"review": datasets.Value("string"), | |
"label": datasets.features.ClassLabel(names=["NEG", "POS"]), | |
"evidences": datasets.features.Sequence(datasets.Value("string")), | |
} | |
), | |
supervised_keys=None, | |
homepage="http://www.cs.jhu.edu/~ozaidan/rationales/", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
archive = dl_manager.download(_DOWNLOAD_URL) | |
data_dir = "movies/" | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"reviews_dir": data_dir + "docs", | |
"filepath": data_dir + "train.jsonl", | |
"files": dl_manager.iter_archive(archive), | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"reviews_dir": data_dir + "docs", | |
"filepath": data_dir + "val.jsonl", | |
"files": dl_manager.iter_archive(archive), | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"reviews_dir": data_dir + "docs", | |
"filepath": data_dir + "test.jsonl", | |
"files": dl_manager.iter_archive(archive), | |
}, | |
), | |
] | |
def _generate_examples(self, reviews_dir, filepath, files): | |
"""Yields examples.""" | |
reviews = {} | |
for path, f in files: | |
if path.startswith(reviews_dir): | |
reviews[path.split("/")[-1]] = f.read().decode("utf-8") | |
elif path == filepath: | |
for line in f: | |
row = json.loads(line.decode("utf-8")) | |
doc_id = row["annotation_id"] | |
review_text = reviews[doc_id] | |
evidences = [] | |
for evidence in row["evidences"]: | |
for e in evidence: | |
evidences.append(e["text"]) | |
yield doc_id, { | |
"review": review_text, | |
"label": row["classification"], | |
"evidences": evidences, | |
} | |
break | |