eoguzakin commited on
Commit
2be7ca8
Β·
verified Β·
1 Parent(s): 76ce00c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +25 -48
README.md CHANGED
@@ -13,7 +13,7 @@ task_categories:
13
  - other
14
  size_categories:
15
  - 1K<n<10K
16
- homepage: https://huggingface.co/datasets/eoguzakin/aigi-inpainting-robustness
17
  ---
18
 
19
  # Robustness of AI-Generated Image Detection Against Localized Inpainting Attacks
@@ -44,6 +44,7 @@ Everything is packaged as `.tar.xz` archives to ensure reproducibility and easy
44
  β”‚ └─ masks_treering_wm.tar.xz
45
  └─ checksums.sha256
46
 
 
47
  - **detectors/** β€” per-detector dataset β€œviews,” already resized/re-encoded into the formats expected by each model.
48
  - **masks/** β€” random-rectangle and random-blob object masks (area-binned), used to generate inpainting attacks.
49
  - **checksums.sha256** β€” SHA-256 integrity hashes for all archives.
@@ -71,16 +72,23 @@ randrect/
71
  randblob_bins/bin{1..4}/
72
  [reals_inpainted/]
73
 
74
- **Detector-specific formats:**
 
 
75
 
76
- | Detector | Paradigm | Input format | Notes |
77
- |----------|----------|--------------|-------|
78
- | **UFD** (Ojha et al. 2023) | Passive (semantic) | 512Γ—512 PNG | CLIP-based detector |
79
- | **DIMD** (Corvi et al. 2023) | Passive (artifact) | 256Γ—256 JPEG | Matches training distribution |
80
- | **DIRE** (Wang et al. 2023) | Training-free (diffusion recon.) | 512Γ—512 PNG | ADM prior |
81
- | **AEROBLADE** (Ricker et al. 2024) | Training-free (autoencoder recon.) | 512Γ—512 PNG | LPIPS distance |
82
- | **Stable Signature** (Fernandez et al. 2023) | Watermarking | 512Γ—512 PNG | Watermarked VAE decoder |
83
- | **Tree-Ring** (Wen et al. 2023) | Watermarking | 512Γ—512 PNG | Frequency-domain watermark |
 
 
 
 
 
84
 
85
  ---
86
 
@@ -143,7 +151,7 @@ Datasets are organized to support a **fixed-threshold robustness evaluation**.
143
  from huggingface_hub import hf_hub_download
144
  import tarfile, os
145
 
146
- REPO = "eoguzakin/Robustness-of-AI-Generated-Image-Detection-Against-Localized-Inpainting-Attacks"
147
 
148
  def fetch_and_extract(filename, target_dir):
149
  path = hf_hub_download(repo_id=REPO, filename=filename, repo_type="dataset")
@@ -160,57 +168,26 @@ bash
160
  Kodu kopyala
161
  sha256sum -c checksums.sha256
162
  πŸ§ͺ Provenance
163
- Reals: SEMI-TRUTHS (Pal et al. 2024) OpenImages subset.
164
 
165
  Fakes: GenImage diverse generator set.
166
 
167
- Inpainting attacks:
168
-
169
- LaMa (Suvorov et al. 2022)
170
 
171
- ZITS (Dong et al. 2022)
172
 
173
- Watermarks:
174
-
175
- Stable Signature watermarked VAE decoder.
176
-
177
- Tree-Ring frequency-domain embedding.
178
-
179
- Detector-specific preprocessing (resizing, JPEG re-encoding) applied only in detector views, ensuring comparability.
180
 
181
  πŸ“š Citations
182
- If you use this dataset, please cite:
183
-
184
- Pal et al., 2024 β€” Semi-Truths: A Large-Scale Dataset of AI-Augmented Images for Evaluating Robustness of AI-Generated Image Detectors.
185
-
186
- Ojha et al., 2023 β€” Universal Fake Image Detectors.
187
-
188
- Corvi et al., 2023 β€” On the Detection of Synthetic Images Generated by Diffusion Models.
189
-
190
- Wang et al., 2023 β€” DIRE for Diffusion-Generated Image Detection.
191
-
192
- Ricker et al., 2024 β€” AEROBLADE.
193
-
194
- Fernandez et al., 2023 β€” Stable Signature.
195
-
196
- Wen et al., 2023 β€” Tree-Ring Watermarks.
197
-
198
- Suvorov et al., 2022 β€” LaMa Inpainting.
199
-
200
- Rombach et al., 2022 β€” Latent Diffusion Models.
201
-
202
- Dong et al., 2022 β€” ZITS Inpainting.
203
 
204
  πŸ“ License
205
- These archives are derived datasets for research use only.
206
-
207
  Upstream datasets (SEMI-TRUTHS, GenImage, LaMa, ZITS, etc.) retain their original licenses.
208
-
209
  This packaging (scripts + archive structure) is released under CC BY-NC 4.0 unless otherwise specified.
210
 
211
  πŸ‘€ Maintainer
212
  Oguz Akin β€” Saarland University
213
-
214
  Contact: ogak00001@stud.uni-saarland.de
215
 
216
  πŸ—“οΈ Changelog
 
13
  - other
14
  size_categories:
15
  - 1K<n<10K
16
+ homepage: https://huggingface.co/datasets/eoguzakin/Robustness of AI-Generated Image Detection Against Localized Inpainting Attacks
17
  ---
18
 
19
  # Robustness of AI-Generated Image Detection Against Localized Inpainting Attacks
 
44
  β”‚ └─ masks_treering_wm.tar.xz
45
  └─ checksums.sha256
46
 
47
+
48
  - **detectors/** β€” per-detector dataset β€œviews,” already resized/re-encoded into the formats expected by each model.
49
  - **masks/** β€” random-rectangle and random-blob object masks (area-binned), used to generate inpainting attacks.
50
  - **checksums.sha256** β€” SHA-256 integrity hashes for all archives.
 
72
  randblob_bins/bin{1..4}/
73
  [reals_inpainted/]
74
 
75
+ ---
76
+
77
+ ### Detector Input Handling
78
 
79
+ **On disk:** All datasets are stored as **PNG, 512Γ—512, lossless**.
80
+ **At runtime:** Each detector runner applies its own preprocessing to match the original paper/training setup:
81
+
82
+ - **UFD β†’ 224**
83
+ (Resized + center-cropped to 224Γ—224, CLIP normalization.)
84
+ - **DIMD β†’ JPEG-256**
85
+ (Resized to 256Γ—256, with JPEG round-trip to mimic training distribution.)
86
+ - **DIRE β†’ 256**
87
+ (Resized to 256Γ—256, matching the ADM ImageNet-256 diffusion prior.)
88
+ - **AEROBLADE / StableSig / Tree-Ring β†’ 512**
89
+ (All evaluated directly at 512Γ—512 without JPEG compression.)
90
+
91
+ > **Why this split?** Storing everything as **PNG-512** keeps the dataset lossless and comparable. Each runner then enforces the preprocessing that the corresponding model expects, ensuring scientifically fair evaluation.
92
 
93
  ---
94
 
 
151
  from huggingface_hub import hf_hub_download
152
  import tarfile, os
153
 
154
+ REPO = "eoguzakin/Robustness of AI-Generated Image Detection Against Localized Inpainting Attacks"
155
 
156
  def fetch_and_extract(filename, target_dir):
157
  path = hf_hub_download(repo_id=REPO, filename=filename, repo_type="dataset")
 
168
  Kodu kopyala
169
  sha256sum -c checksums.sha256
170
  πŸ§ͺ Provenance
171
+ Reals: SEMI-TRUTHS (Pal et al. 2024), OpenImages subset.
172
 
173
  Fakes: GenImage diverse generator set.
174
 
175
+ Inpainting attacks: LaMa (Suvorov et al. 2022), ZITS (Dong et al. 2022).
 
 
176
 
177
+ Watermarks: Stable Signature (Fernandez et al. 2023), Tree-Ring (Wen et al. 2023).
178
 
179
+ Detector-specific preprocessing applied only at runtime, ensuring comparability.
 
 
 
 
 
 
180
 
181
  πŸ“š Citations
182
+ (Keep your citation block here as before β€” unchanged.)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
183
 
184
  πŸ“ License
185
+ Derived datasets for research use only.
 
186
  Upstream datasets (SEMI-TRUTHS, GenImage, LaMa, ZITS, etc.) retain their original licenses.
 
187
  This packaging (scripts + archive structure) is released under CC BY-NC 4.0 unless otherwise specified.
188
 
189
  πŸ‘€ Maintainer
190
  Oguz Akin β€” Saarland University
 
191
  Contact: ogak00001@stud.uni-saarland.de
192
 
193
  πŸ—“οΈ Changelog