|
|
import logging |
|
|
import os |
|
|
import sys |
|
|
|
|
|
ROOT_DIR = os.path.dirname(os.path.dirname(__file__)) |
|
|
if ROOT_DIR not in sys.path: |
|
|
sys.path.insert(0, ROOT_DIR) |
|
|
|
|
|
from src.utils.util import setup_logger |
|
|
from src.config.config_args import * |
|
|
from src.processor.trainer import Trainer |
|
|
import torch.multiprocessing as mp |
|
|
import torch |
|
|
import torch.distributed as dist |
|
|
import numpy as np |
|
|
import random |
|
|
from torch.backends import cudnn |
|
|
|
|
|
|
|
|
def init_seeds(seed=0, cuda_deterministic=True): |
|
|
random.seed(seed) |
|
|
np.random.seed(seed) |
|
|
torch.manual_seed(seed) |
|
|
torch.cuda.manual_seed(seed) |
|
|
torch.cuda.manual_seed_all(seed) |
|
|
|
|
|
if cuda_deterministic: |
|
|
cudnn.deterministic = True |
|
|
cudnn.benchmark = False |
|
|
else: |
|
|
cudnn.deterministic = False |
|
|
cudnn.benchmark = True |
|
|
|
|
|
|
|
|
def device_config(args): |
|
|
try: |
|
|
args.nodes = 1 |
|
|
args.ngpus_per_node = len(args.gpu_ids) |
|
|
args.world_size = args.nodes * args.ngpus_per_node |
|
|
|
|
|
except RuntimeError as e: |
|
|
print(e) |
|
|
|
|
|
|
|
|
def setup(rank, world_size): |
|
|
|
|
|
dist.init_process_group( |
|
|
backend='nccl', |
|
|
|
|
|
init_method=f'tcp://127.0.0.1:12361', |
|
|
world_size=world_size, |
|
|
rank=rank |
|
|
) |
|
|
|
|
|
|
|
|
def main_worker(rank, args): |
|
|
setup(rank, args.world_size) |
|
|
|
|
|
torch.cuda.set_device(rank) |
|
|
args.num_workers = int(args.num_workers / args.ngpus_per_node) |
|
|
args.device = torch.device(f"cuda:{rank}") |
|
|
args.rank = rank |
|
|
|
|
|
init_seeds(1 + rank) |
|
|
|
|
|
log_name = 'train_' + args.save_name |
|
|
setup_logger(logger_name=log_name, root=args.save_dir, |
|
|
level=logging.INFO if rank in [-1, 0] else logging.WARN, screen=True, tofile=True) |
|
|
logger = logging.getLogger(log_name) |
|
|
logger.info(str(args)) |
|
|
|
|
|
Trainer(args, logger).run() |
|
|
cleanup() |
|
|
|
|
|
|
|
|
def main(): |
|
|
args = parser.parse_args() |
|
|
check_and_setup_parser(args) |
|
|
|
|
|
if args.ddp: |
|
|
mp.set_sharing_strategy('file_system') |
|
|
device_config(args) |
|
|
mp.spawn( |
|
|
main_worker, |
|
|
nprocs=args.world_size, |
|
|
args=(args, ) |
|
|
) |
|
|
|
|
|
else: |
|
|
log_name = 'train_' + args.save_name |
|
|
setup_logger(logger_name=log_name, root=args.save_dir, screen=True, tofile=True) |
|
|
logger = logging.getLogger(log_name) |
|
|
logger.info(str(args)) |
|
|
|
|
|
args.rank = -1 |
|
|
Trainer(args, logger).run(), |
|
|
|
|
|
|
|
|
def cleanup(): |
|
|
dist.destroy_process_group() |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |
|
|
|