|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
|
|
import json |
|
|
import os |
|
|
import sys |
|
|
import time |
|
|
from abc import ABC, abstractmethod |
|
|
from copy import copy |
|
|
from logging.config import fileConfig |
|
|
from pathlib import Path |
|
|
from typing import Any, Sequence |
|
|
|
|
|
from monai.apps.utils import get_logger |
|
|
from monai.bundle.config_parser import ConfigParser |
|
|
from monai.bundle.properties import InferProperties, MetaProperties, TrainProperties |
|
|
from monai.bundle.utils import DEFAULT_EXP_MGMT_SETTINGS, EXPR_KEY, ID_REF_KEY, ID_SEP_KEY |
|
|
from monai.config import PathLike |
|
|
from monai.utils import BundleProperty, BundlePropertyConfig, deprecated_arg, deprecated_arg_default, ensure_tuple |
|
|
|
|
|
__all__ = ["BundleWorkflow", "ConfigWorkflow"] |
|
|
|
|
|
logger = get_logger(module_name=__name__) |
|
|
|
|
|
|
|
|
class BundleWorkflow(ABC): |
|
|
""" |
|
|
Base class for the workflow specification in bundle, it can be a training, evaluation or inference workflow. |
|
|
It defines the basic interfaces for the bundle workflow behavior: `initialize`, `run`, `finalize`, etc. |
|
|
And also provides the interface to get / set public properties to interact with a bundle workflow. |
|
|
|
|
|
Args: |
|
|
workflow_type: specifies the workflow type: "train" or "training" for a training workflow, |
|
|
or "infer", "inference", "eval", "evaluation" for a inference workflow, |
|
|
other unsupported string will raise a ValueError. |
|
|
default to `None` for common workflow. |
|
|
workflow: specifies the workflow type: "train" or "training" for a training workflow, |
|
|
or "infer", "inference", "eval", "evaluation" for a inference workflow, |
|
|
other unsupported string will raise a ValueError. |
|
|
default to `None` for common workflow. |
|
|
properties_path: the path to the JSON file of properties. |
|
|
meta_file: filepath of the metadata file, if this is a list of file paths, their contents will be merged in order. |
|
|
logging_file: config file for `logging` module in the program. for more details: |
|
|
https://docs.python.org/3/library/logging.config.html#logging.config.fileConfig. |
|
|
|
|
|
""" |
|
|
|
|
|
supported_train_type: tuple = ("train", "training") |
|
|
supported_infer_type: tuple = ("infer", "inference", "eval", "evaluation") |
|
|
|
|
|
@deprecated_arg( |
|
|
"workflow", |
|
|
since="1.2", |
|
|
removed="1.5", |
|
|
new_name="workflow_type", |
|
|
msg_suffix="please use `workflow_type` instead.", |
|
|
) |
|
|
def __init__( |
|
|
self, |
|
|
workflow_type: str | None = None, |
|
|
workflow: str | None = None, |
|
|
properties_path: PathLike | None = None, |
|
|
meta_file: str | Sequence[str] | None = None, |
|
|
logging_file: str | None = None, |
|
|
): |
|
|
if logging_file is not None: |
|
|
if not os.path.isfile(logging_file): |
|
|
raise FileNotFoundError(f"Cannot find the logging config file: {logging_file}.") |
|
|
logger.info(f"Setting logging properties based on config: {logging_file}.") |
|
|
fileConfig(logging_file, disable_existing_loggers=False) |
|
|
|
|
|
if meta_file is not None: |
|
|
if isinstance(meta_file, str) and not os.path.isfile(meta_file): |
|
|
logger.error( |
|
|
f"Cannot find the metadata config file: {meta_file}. " |
|
|
"Please see: https://docs.monai.io/en/stable/mb_specification.html" |
|
|
) |
|
|
meta_file = None |
|
|
if isinstance(meta_file, list): |
|
|
for f in meta_file: |
|
|
if not os.path.isfile(f): |
|
|
logger.error( |
|
|
f"Cannot find the metadata config file: {f}. " |
|
|
"Please see: https://docs.monai.io/en/stable/mb_specification.html" |
|
|
) |
|
|
meta_file = None |
|
|
|
|
|
workflow_type = workflow if workflow is not None else workflow_type |
|
|
if workflow_type is None and properties_path is None: |
|
|
self.properties = copy(MetaProperties) |
|
|
self.workflow_type = None |
|
|
self.meta_file = meta_file |
|
|
return |
|
|
if properties_path is not None: |
|
|
properties_path = Path(properties_path) |
|
|
if not properties_path.is_file(): |
|
|
raise ValueError(f"Property file {properties_path} does not exist.") |
|
|
with open(properties_path) as json_file: |
|
|
self.properties = json.load(json_file) |
|
|
self.workflow_type = None |
|
|
self.meta_file = meta_file |
|
|
return |
|
|
if workflow_type.lower() in self.supported_train_type: |
|
|
self.properties = {**TrainProperties, **MetaProperties} |
|
|
self.workflow_type = "train" |
|
|
elif workflow_type.lower() in self.supported_infer_type: |
|
|
self.properties = {**InferProperties, **MetaProperties} |
|
|
self.workflow_type = "infer" |
|
|
else: |
|
|
raise ValueError(f"Unsupported workflow type: '{workflow_type}'.") |
|
|
|
|
|
self.meta_file = meta_file |
|
|
|
|
|
@abstractmethod |
|
|
def initialize(self, *args: Any, **kwargs: Any) -> Any: |
|
|
""" |
|
|
Initialize the bundle workflow before running. |
|
|
|
|
|
""" |
|
|
raise NotImplementedError() |
|
|
|
|
|
@abstractmethod |
|
|
def run(self, *args: Any, **kwargs: Any) -> Any: |
|
|
""" |
|
|
Run the bundle workflow, it can be a training, evaluation or inference. |
|
|
|
|
|
""" |
|
|
raise NotImplementedError() |
|
|
|
|
|
@abstractmethod |
|
|
def finalize(self, *args: Any, **kwargs: Any) -> Any: |
|
|
""" |
|
|
Finalize step after the running of bundle workflow. |
|
|
|
|
|
""" |
|
|
raise NotImplementedError() |
|
|
|
|
|
@abstractmethod |
|
|
def _get_property(self, name: str, property: dict) -> Any: |
|
|
""" |
|
|
With specified property name and information, get the expected property value. |
|
|
|
|
|
Args: |
|
|
name: the name of target property. |
|
|
property: other information for the target property, defined in `TrainProperties` or `InferProperties`. |
|
|
|
|
|
""" |
|
|
raise NotImplementedError() |
|
|
|
|
|
@abstractmethod |
|
|
def _set_property(self, name: str, property: dict, value: Any) -> Any: |
|
|
""" |
|
|
With specified property name and information, set value for the expected property. |
|
|
|
|
|
Args: |
|
|
name: the name of target property. |
|
|
property: other information for the target property, defined in `TrainProperties` or `InferProperties`. |
|
|
value: value to set for the property. |
|
|
|
|
|
""" |
|
|
raise NotImplementedError() |
|
|
|
|
|
def __getattr__(self, name): |
|
|
if self.properties is not None and name in self.properties: |
|
|
return self._get_property(name=name, property=self.properties[name]) |
|
|
else: |
|
|
return self.__getattribute__(name) |
|
|
|
|
|
def __setattr__(self, name, value): |
|
|
if name != "properties" and self.properties is not None and name in self.properties: |
|
|
self._set_property(name=name, property=self.properties[name], value=value) |
|
|
else: |
|
|
super().__setattr__(name, value) |
|
|
|
|
|
def get_workflow_type(self): |
|
|
""" |
|
|
Get the workflow type, it can be `None`, "train", or "infer". |
|
|
|
|
|
""" |
|
|
return self.workflow_type |
|
|
|
|
|
def get_meta_file(self): |
|
|
""" |
|
|
Get the meta file. |
|
|
|
|
|
""" |
|
|
return self.meta_file |
|
|
|
|
|
def add_property(self, name: str, required: str, desc: str | None = None) -> None: |
|
|
""" |
|
|
Besides the default predefined properties, some 3rd party applications may need the bundle |
|
|
definition to provide additional properties for the specific use cases, if the bundle can't |
|
|
provide the property, means it can't work with the application. |
|
|
This utility adds the property for the application requirements check and access. |
|
|
|
|
|
Args: |
|
|
name: the name of target property. |
|
|
required: whether the property is "must-have". |
|
|
desc: descriptions for the property. |
|
|
""" |
|
|
if self.properties is None: |
|
|
self.properties = {} |
|
|
if name in self.properties: |
|
|
logger.warn(f"property '{name}' already exists in the properties list, overriding it.") |
|
|
self.properties[name] = {BundleProperty.DESC: desc, BundleProperty.REQUIRED: required} |
|
|
|
|
|
def check_properties(self) -> list[str] | None: |
|
|
""" |
|
|
Check whether the required properties are existing in the bundle workflow. |
|
|
If no workflow type specified, return None, otherwise, return a list of required but missing properties. |
|
|
|
|
|
""" |
|
|
if self.properties is None: |
|
|
return None |
|
|
return [n for n, p in self.properties.items() if p.get(BundleProperty.REQUIRED, False) and not hasattr(self, n)] |
|
|
|
|
|
|
|
|
class ConfigWorkflow(BundleWorkflow): |
|
|
""" |
|
|
Specification for the config-based bundle workflow. |
|
|
Standardized the `initialize`, `run`, `finalize` behavior in a config-based training, evaluation, or inference. |
|
|
Before `run`, we add bundle root directory to Python search directories automatically. |
|
|
For more information: https://docs.monai.io/en/latest/mb_specification.html. |
|
|
|
|
|
Args: |
|
|
config_file: filepath of the config file, if this is a list of file paths, their contents will be merged in order. |
|
|
meta_file: filepath of the metadata file, if this is a list of file paths, their contents will be merged in order. |
|
|
If None, default to "configs/metadata.json", which is commonly used for bundles in MONAI model zoo. |
|
|
logging_file: config file for `logging` module in the program. for more details: |
|
|
https://docs.python.org/3/library/logging.config.html#logging.config.fileConfig. |
|
|
If None, default to "configs/logging.conf", which is commonly used for bundles in MONAI model zoo. |
|
|
init_id: ID name of the expected config expression to initialize before running, default to "initialize". |
|
|
allow a config to have no `initialize` logic and the ID. |
|
|
run_id: ID name of the expected config expression to run, default to "run". |
|
|
to run the config, the target config must contain this ID. |
|
|
final_id: ID name of the expected config expression to finalize after running, default to "finalize". |
|
|
allow a config to have no `finalize` logic and the ID. |
|
|
tracking: if not None, enable the experiment tracking at runtime with optionally configurable and extensible. |
|
|
if "mlflow", will add `MLFlowHandler` to the parsed bundle with default tracking settings, |
|
|
if other string, treat it as file path to load the tracking settings. |
|
|
if `dict`, treat it as tracking settings. |
|
|
will patch the target config content with `tracking handlers` and the top-level items of `configs`. |
|
|
for detailed usage examples, please check the tutorial: |
|
|
https://github.com/Project-MONAI/tutorials/blob/main/experiment_management/bundle_integrate_mlflow.ipynb. |
|
|
workflow_type: specifies the workflow type: "train" or "training" for a training workflow, |
|
|
or "infer", "inference", "eval", "evaluation" for a inference workflow, |
|
|
other unsupported string will raise a ValueError. |
|
|
default to `None` for common workflow. |
|
|
workflow: specifies the workflow type: "train" or "training" for a training workflow, |
|
|
or "infer", "inference", "eval", "evaluation" for a inference workflow, |
|
|
other unsupported string will raise a ValueError. |
|
|
default to `None` for common workflow. |
|
|
properties_path: the path to the JSON file of properties. |
|
|
override: id-value pairs to override or add the corresponding config content. |
|
|
e.g. ``--net#input_chns 42``, ``--net %/data/other.json#net_arg`` |
|
|
|
|
|
""" |
|
|
|
|
|
@deprecated_arg( |
|
|
"workflow", |
|
|
since="1.2", |
|
|
removed="1.5", |
|
|
new_name="workflow_type", |
|
|
msg_suffix="please use `workflow_type` instead.", |
|
|
) |
|
|
@deprecated_arg_default("workflow_type", None, "train", since="1.2", replaced="1.4") |
|
|
def __init__( |
|
|
self, |
|
|
config_file: str | Sequence[str], |
|
|
meta_file: str | Sequence[str] | None = None, |
|
|
logging_file: str | None = None, |
|
|
init_id: str = "initialize", |
|
|
run_id: str = "run", |
|
|
final_id: str = "finalize", |
|
|
tracking: str | dict | None = None, |
|
|
workflow_type: str | None = None, |
|
|
workflow: str | None = None, |
|
|
properties_path: PathLike | None = None, |
|
|
**override: Any, |
|
|
) -> None: |
|
|
workflow_type = workflow if workflow is not None else workflow_type |
|
|
if config_file is not None: |
|
|
_config_files = ensure_tuple(config_file) |
|
|
config_root_path = Path(_config_files[0]).parent |
|
|
for _config_file in _config_files: |
|
|
_config_file = Path(_config_file) |
|
|
if _config_file.parent != config_root_path: |
|
|
logger.warn( |
|
|
f"Not all config files are in {config_root_path}. If logging_file and meta_file are" |
|
|
f"not specified, {config_root_path} will be used as the default config root directory." |
|
|
) |
|
|
if not _config_file.is_file(): |
|
|
raise FileNotFoundError(f"Cannot find the config file: {_config_file}.") |
|
|
else: |
|
|
config_root_path = Path("configs") |
|
|
meta_file = str(config_root_path / "metadata.json") if meta_file is None else meta_file |
|
|
super().__init__(workflow_type=workflow_type, meta_file=meta_file, properties_path=properties_path) |
|
|
self.config_root_path = config_root_path |
|
|
logging_file = str(self.config_root_path / "logging.conf") if logging_file is None else logging_file |
|
|
if logging_file is not None: |
|
|
if not os.path.isfile(logging_file): |
|
|
if logging_file == str(self.config_root_path / "logging.conf"): |
|
|
logger.warn(f"Default logging file in {logging_file} does not exist, skipping logging.") |
|
|
else: |
|
|
raise FileNotFoundError(f"Cannot find the logging config file: {logging_file}.") |
|
|
else: |
|
|
logger.info(f"Setting logging properties based on config: {logging_file}.") |
|
|
fileConfig(logging_file, disable_existing_loggers=False) |
|
|
|
|
|
self.parser = ConfigParser() |
|
|
self.parser.read_config(f=config_file) |
|
|
if self.meta_file is not None: |
|
|
self.parser.read_meta(f=self.meta_file) |
|
|
|
|
|
|
|
|
self.parser.update(pairs=override) |
|
|
self.init_id = init_id |
|
|
self.run_id = run_id |
|
|
self.final_id = final_id |
|
|
|
|
|
if tracking is not None: |
|
|
if isinstance(tracking, str) and tracking in DEFAULT_EXP_MGMT_SETTINGS: |
|
|
settings_ = DEFAULT_EXP_MGMT_SETTINGS[tracking] |
|
|
else: |
|
|
settings_ = ConfigParser.load_config_files(tracking) |
|
|
self.patch_bundle_tracking(parser=self.parser, settings=settings_) |
|
|
self._is_initialized: bool = False |
|
|
|
|
|
def initialize(self) -> Any: |
|
|
""" |
|
|
Initialize the bundle workflow before running. |
|
|
|
|
|
""" |
|
|
|
|
|
self.parser.parse(reset=True) |
|
|
self._is_initialized = True |
|
|
return self._run_expr(id=self.init_id) |
|
|
|
|
|
def run(self) -> Any: |
|
|
""" |
|
|
Run the bundle workflow, it can be a training, evaluation or inference. |
|
|
Before run, we add bundle root directory to Python search directories automatically. |
|
|
|
|
|
""" |
|
|
_bundle_root_path = ( |
|
|
self.config_root_path.parent if self.config_root_path.name == "configs" else self.config_root_path |
|
|
) |
|
|
sys.path.insert(1, str(_bundle_root_path)) |
|
|
if self.run_id not in self.parser: |
|
|
raise ValueError(f"run ID '{self.run_id}' doesn't exist in the config file.") |
|
|
return self._run_expr(id=self.run_id) |
|
|
|
|
|
def finalize(self) -> Any: |
|
|
""" |
|
|
Finalize step after the running of bundle workflow. |
|
|
|
|
|
""" |
|
|
return self._run_expr(id=self.final_id) |
|
|
|
|
|
def check_properties(self) -> list[str] | None: |
|
|
""" |
|
|
Check whether the required properties are existing in the bundle workflow. |
|
|
If the optional properties have reference in the config, will also check whether the properties are existing. |
|
|
If no workflow type specified, return None, otherwise, return a list of required but missing properties. |
|
|
|
|
|
""" |
|
|
ret = super().check_properties() |
|
|
if self.properties is None: |
|
|
logger.warn("No available properties had been set, skipping check.") |
|
|
return None |
|
|
if ret: |
|
|
logger.warn(f"Loaded bundle does not contain the following required properties: {ret}") |
|
|
|
|
|
wrong_props = [] |
|
|
for n, p in self.properties.items(): |
|
|
if not p.get(BundleProperty.REQUIRED, False) and not self._check_optional_id(name=n, property=p): |
|
|
wrong_props.append(n) |
|
|
if wrong_props: |
|
|
logger.warn(f"Loaded bundle defines the following optional properties with wrong ID: {wrong_props}") |
|
|
if ret is not None: |
|
|
ret.extend(wrong_props) |
|
|
return ret |
|
|
|
|
|
def _run_expr(self, id: str, **kwargs: dict) -> Any: |
|
|
return self.parser.get_parsed_content(id, **kwargs) if id in self.parser else None |
|
|
|
|
|
def _get_prop_id(self, name: str, property: dict) -> Any: |
|
|
prop_id = property[BundlePropertyConfig.ID] |
|
|
if prop_id not in self.parser: |
|
|
if not property.get(BundleProperty.REQUIRED, False): |
|
|
return None |
|
|
else: |
|
|
raise KeyError(f"Property '{name}' with config ID '{prop_id}' not in the config.") |
|
|
return prop_id |
|
|
|
|
|
def _get_property(self, name: str, property: dict) -> Any: |
|
|
""" |
|
|
With specified property name and information, get the parsed property value from config. |
|
|
|
|
|
Args: |
|
|
name: the name of target property. |
|
|
property: other information for the target property, defined in `TrainProperties` or `InferProperties`. |
|
|
|
|
|
""" |
|
|
if not self._is_initialized: |
|
|
raise RuntimeError("Please execute 'initialize' before getting any parsed content.") |
|
|
prop_id = self._get_prop_id(name, property) |
|
|
return self.parser.get_parsed_content(id=prop_id) if prop_id is not None else None |
|
|
|
|
|
def _set_property(self, name: str, property: dict, value: Any) -> None: |
|
|
""" |
|
|
With specified property name and information, set value for the expected property. |
|
|
|
|
|
Args: |
|
|
name: the name of target property. |
|
|
property: other information for the target property, defined in `TrainProperties` or `InferProperties`. |
|
|
value: value to set for the property. |
|
|
|
|
|
""" |
|
|
prop_id = self._get_prop_id(name, property) |
|
|
if prop_id is not None: |
|
|
self.parser[prop_id] = value |
|
|
|
|
|
self._is_initialized = False |
|
|
self.parser.ref_resolver.reset() |
|
|
|
|
|
def add_property( |
|
|
self, name: str, required: str, config_id: str, desc: str | None = None |
|
|
) -> None: |
|
|
""" |
|
|
Besides the default predefined properties, some 3rd party applications may need the bundle |
|
|
definition to provide additional properties for the specific use cases, if the bundle can't |
|
|
provide the property, means it can't work with the application. |
|
|
This utility adds the property for the application requirements check and access. |
|
|
|
|
|
Args: |
|
|
name: the name of target property. |
|
|
required: whether the property is "must-have". |
|
|
config_id: the config ID of target property in the bundle definition. |
|
|
desc: descriptions for the property. |
|
|
|
|
|
""" |
|
|
super().add_property(name=name, required=required, desc=desc) |
|
|
self.properties[name][BundlePropertyConfig.ID] = config_id |
|
|
|
|
|
def _check_optional_id(self, name: str, property: dict) -> bool: |
|
|
""" |
|
|
If an optional property has reference in the config, check whether the property is existing. |
|
|
If `ValidationHandler` is defined for a training workflow, will check whether the optional properties |
|
|
"evaluator" and "val_interval" are existing. |
|
|
|
|
|
Args: |
|
|
name: the name of target property. |
|
|
property: other information for the target property, defined in `TrainProperties` or `InferProperties`. |
|
|
|
|
|
""" |
|
|
id = property.get(BundlePropertyConfig.ID, None) |
|
|
ref_id = property.get(BundlePropertyConfig.REF_ID, None) |
|
|
if ref_id is None: |
|
|
|
|
|
return True |
|
|
|
|
|
ref: str | None = None |
|
|
if name in ("evaluator", "val_interval"): |
|
|
if f"train{ID_SEP_KEY}handlers" in self.parser: |
|
|
for h in self.parser[f"train{ID_SEP_KEY}handlers"]: |
|
|
if h["_target_"] == "ValidationHandler": |
|
|
ref = h.get(ref_id, None) |
|
|
else: |
|
|
ref = self.parser.get(ref_id, None) |
|
|
|
|
|
if ref is not None and not ref.startswith(EXPR_KEY) and ref != ID_REF_KEY + id: |
|
|
return False |
|
|
return True |
|
|
|
|
|
@staticmethod |
|
|
def patch_bundle_tracking(parser: ConfigParser, settings: dict) -> None: |
|
|
""" |
|
|
Patch the loaded bundle config with a new handler logic to enable experiment tracking features. |
|
|
|
|
|
Args: |
|
|
parser: loaded config content to patch the handler. |
|
|
settings: settings for the experiment tracking, should follow the pattern of default settings. |
|
|
|
|
|
""" |
|
|
for k, v in settings["configs"].items(): |
|
|
if k in settings["handlers_id"]: |
|
|
engine = parser.get(settings["handlers_id"][k]["id"]) |
|
|
if engine is not None: |
|
|
handlers = parser.get(settings["handlers_id"][k]["handlers"]) |
|
|
if handlers is None: |
|
|
engine["train_handlers" if k == "trainer" else "val_handlers"] = [v] |
|
|
else: |
|
|
handlers.append(v) |
|
|
elif k not in parser: |
|
|
parser[k] = v |
|
|
|
|
|
default_name = f"config_{time.strftime('%Y%m%d_%H%M%S')}.json" |
|
|
|
|
|
|
|
|
|
|
|
filepath = parser.get("save_execute_config", True) |
|
|
if filepath: |
|
|
if isinstance(filepath, bool): |
|
|
if "output_dir" not in parser: |
|
|
|
|
|
parser["output_dir"] = f"{EXPR_KEY}{ID_REF_KEY}bundle_root + '/eval'" |
|
|
|
|
|
parser["save_execute_config"] = parser["output_dir"] + f" + '/{default_name}'" |
|
|
filepath = os.path.join(parser.get_parsed_content("output_dir"), default_name) |
|
|
Path(filepath).parent.mkdir(parents=True, exist_ok=True) |
|
|
parser.export_config_file(parser.get(), filepath) |
|
|
else: |
|
|
parser["save_execute_config"] = None |
|
|
|