|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
|
|
import json |
|
|
import os |
|
|
import zipfile |
|
|
from typing import Any |
|
|
|
|
|
from monai.config.deviceconfig import get_config_values |
|
|
from monai.utils import optional_import |
|
|
|
|
|
yaml, _ = optional_import("yaml") |
|
|
|
|
|
__all__ = ["ID_REF_KEY", "ID_SEP_KEY", "EXPR_KEY", "MACRO_KEY", "DEFAULT_MLFLOW_SETTINGS", "DEFAULT_EXP_MGMT_SETTINGS"] |
|
|
|
|
|
ID_REF_KEY = "@" |
|
|
ID_SEP_KEY = "::" |
|
|
EXPR_KEY = "$" |
|
|
MACRO_KEY = "%" |
|
|
|
|
|
_conf_values = get_config_values() |
|
|
|
|
|
DEFAULT_METADATA = { |
|
|
"version": "0.0.1", |
|
|
"changelog": {"0.0.1": "Initial version"}, |
|
|
"monai_version": _conf_values["MONAI"], |
|
|
"pytorch_version": str(_conf_values["Pytorch"]).split("+")[0].split("a")[0], |
|
|
"numpy_version": _conf_values["Numpy"], |
|
|
"optional_packages_version": {}, |
|
|
"task": "Describe what the network predicts", |
|
|
"description": "A longer description of what the network does, use context, inputs, outputs, etc.", |
|
|
"authors": "Your Name Here", |
|
|
"copyright": "Copyright (c) Your Name Here", |
|
|
"network_data_format": {"inputs": {}, "outputs": {}}, |
|
|
} |
|
|
|
|
|
DEFAULT_INFERENCE = { |
|
|
"imports": ["$import glob"], |
|
|
"device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')", |
|
|
"ckpt_path": "$@bundle_root + '/models/model.pt'", |
|
|
"dataset_dir": "/workspace/data", |
|
|
"datalist": "$list(sorted(glob.glob(@dataset_dir + '/*.jpeg')))", |
|
|
"network_def": {"_target_": "???", "spatial_dims": 2}, |
|
|
"network": "$@network_def.to(@device)", |
|
|
"preprocessing": { |
|
|
"_target_": "Compose", |
|
|
"transforms": [ |
|
|
{"_target_": "LoadImaged", "keys": "image"}, |
|
|
{"_target_": "EnsureChannelFirstd", "keys": "image"}, |
|
|
{"_target_": "ScaleIntensityd", "keys": "image"}, |
|
|
{"_target_": "EnsureTyped", "keys": "image", "device": "@device"}, |
|
|
], |
|
|
}, |
|
|
"dataset": {"_target_": "Dataset", "data": "$[{'image': i} for i in @datalist]", "transform": "@preprocessing"}, |
|
|
"dataloader": { |
|
|
"_target_": "DataLoader", |
|
|
"dataset": "@dataset", |
|
|
"batch_size": 1, |
|
|
"shuffle": False, |
|
|
"num_workers": 0, |
|
|
}, |
|
|
"inferer": {"_target_": "SimpleInferer"}, |
|
|
"postprocessing": { |
|
|
"_target_": "Compose", |
|
|
"transforms": [ |
|
|
{"_target_": "Activationsd", "keys": "pred", "softmax": True}, |
|
|
{"_target_": "AsDiscreted", "keys": "pred", "argmax": True}, |
|
|
], |
|
|
}, |
|
|
"handlers": [ |
|
|
{ |
|
|
"_target_": "CheckpointLoader", |
|
|
"_disabled_": "$not os.path.exists(@ckpt_path)", |
|
|
"load_path": "@ckpt_path", |
|
|
"load_dict": {"model": "@network"}, |
|
|
} |
|
|
], |
|
|
"evaluator": { |
|
|
"_target_": "SupervisedEvaluator", |
|
|
"device": "@device", |
|
|
"val_data_loader": "@dataloader", |
|
|
"network": "@network", |
|
|
"inferer": "@inferer", |
|
|
"postprocessing": "@postprocessing", |
|
|
"val_handlers": "@handlers", |
|
|
}, |
|
|
"evaluating": ["$@evaluator.run()"], |
|
|
} |
|
|
|
|
|
DEFAULT_HANDLERS_ID = { |
|
|
"trainer": {"id": "train#trainer", "handlers": "train#handlers"}, |
|
|
"validator": {"id": "validate#evaluator", "handlers": "validate#handlers"}, |
|
|
"evaluator": {"id": "evaluator", "handlers": "handlers"}, |
|
|
} |
|
|
|
|
|
DEFAULT_MLFLOW_SETTINGS = { |
|
|
"handlers_id": DEFAULT_HANDLERS_ID, |
|
|
"configs": { |
|
|
|
|
|
"output_dir": "$@bundle_root + '/eval'", |
|
|
|
|
|
"tracking_uri": "$monai.utils.path_to_uri(@output_dir) + '/mlruns'", |
|
|
"experiment_name": "monai_experiment", |
|
|
"run_name": None, |
|
|
|
|
|
"save_execute_config": True, |
|
|
"is_not_rank0": ( |
|
|
"$torch.distributed.is_available() \ |
|
|
and torch.distributed.is_initialized() and torch.distributed.get_rank() > 0" |
|
|
), |
|
|
|
|
|
"trainer": { |
|
|
"_target_": "MLFlowHandler", |
|
|
"_disabled_": "@is_not_rank0", |
|
|
"tracking_uri": "@tracking_uri", |
|
|
"experiment_name": "@experiment_name", |
|
|
"run_name": "@run_name", |
|
|
"artifacts": "@save_execute_config", |
|
|
"iteration_log": True, |
|
|
"epoch_log": True, |
|
|
"tag_name": "train_loss", |
|
|
"output_transform": "$monai.handlers.from_engine(['loss'], first=True)", |
|
|
"close_on_complete": True, |
|
|
}, |
|
|
|
|
|
"validator": { |
|
|
"_target_": "MLFlowHandler", |
|
|
"_disabled_": "@is_not_rank0", |
|
|
"tracking_uri": "@tracking_uri", |
|
|
"experiment_name": "@experiment_name", |
|
|
"run_name": "@run_name", |
|
|
"iteration_log": False, |
|
|
}, |
|
|
|
|
|
"evaluator": { |
|
|
"_target_": "MLFlowHandler", |
|
|
"_disabled_": "@is_not_rank0", |
|
|
"tracking_uri": "@tracking_uri", |
|
|
"experiment_name": "@experiment_name", |
|
|
"run_name": "@run_name", |
|
|
"artifacts": "@save_execute_config", |
|
|
"iteration_log": False, |
|
|
"close_on_complete": True, |
|
|
}, |
|
|
}, |
|
|
} |
|
|
|
|
|
DEFAULT_EXP_MGMT_SETTINGS = {"mlflow": DEFAULT_MLFLOW_SETTINGS} |
|
|
|
|
|
|
|
|
def load_bundle_config(bundle_path: str, *config_names: str, **load_kw_args: Any) -> Any: |
|
|
""" |
|
|
Load the metadata and nominated configuration files from a MONAI bundle without loading the network itself. |
|
|
|
|
|
This function will load the information from the bundle, which can be a directory or a zip file containing a |
|
|
directory or a Torchscript bundle, and return the parser object with the information. This saves having to load |
|
|
the model if only the information is wanted, and can work on any sort of bundle format. |
|
|
|
|
|
Args: |
|
|
bundle_path: path to the bundle directory or zip file |
|
|
config_names: names of configuration files with extensions to load, should not be full paths but just name+ext |
|
|
load_kw_args: keyword arguments to pass to the ConfigParser object when loading |
|
|
|
|
|
Returns: |
|
|
ConfigParser object containing the parsed information |
|
|
""" |
|
|
|
|
|
from monai.bundle.config_parser import ConfigParser |
|
|
|
|
|
parser = ConfigParser() |
|
|
|
|
|
if not os.path.exists(bundle_path): |
|
|
raise ValueError(f"Cannot find bundle file/directory '{bundle_path}'") |
|
|
|
|
|
|
|
|
if os.path.isdir(bundle_path): |
|
|
conf_data = [] |
|
|
parser.read_meta(f=os.path.join(bundle_path, "configs", "metadata.json"), **load_kw_args) |
|
|
|
|
|
for cname in config_names: |
|
|
cpath = os.path.join(bundle_path, "configs", cname) |
|
|
if not os.path.exists(cpath): |
|
|
raise ValueError(f"Cannot find config file '{cpath}'") |
|
|
|
|
|
conf_data.append(cpath) |
|
|
|
|
|
parser.read_config(f=conf_data, **load_kw_args) |
|
|
else: |
|
|
|
|
|
|
|
|
name, _ = os.path.splitext(os.path.basename(bundle_path)) |
|
|
|
|
|
archive = zipfile.ZipFile(bundle_path, "r") |
|
|
|
|
|
all_files = archive.namelist() |
|
|
|
|
|
zip_meta_name = f"{name}/configs/metadata.json" |
|
|
|
|
|
if zip_meta_name in all_files: |
|
|
prefix = f"{name}/configs/" |
|
|
else: |
|
|
zip_meta_name = f"{name}/extra/metadata.json" |
|
|
prefix = f"{name}/extra/" |
|
|
|
|
|
meta_json = json.loads(archive.read(zip_meta_name)) |
|
|
parser.read_meta(f=meta_json) |
|
|
|
|
|
for cname in config_names: |
|
|
full_cname = prefix + cname |
|
|
if full_cname not in all_files: |
|
|
raise ValueError(f"Cannot find config file '{full_cname}'") |
|
|
|
|
|
ardata = archive.read(full_cname) |
|
|
|
|
|
if full_cname.lower().endswith("json"): |
|
|
cdata = json.loads(ardata, **load_kw_args) |
|
|
elif full_cname.lower().endswith(("yaml", "yml")): |
|
|
cdata = yaml.safe_load(ardata, **load_kw_args) |
|
|
|
|
|
parser.read_config(f=cdata) |
|
|
|
|
|
return parser |
|
|
|