|
|
import numpy as np |
|
|
from typing import Union, Tuple |
|
|
import time |
|
|
|
|
|
class DataLoaderMultiProcess: |
|
|
def __init__(self, dataset, |
|
|
patch_size, |
|
|
batch_size=2, |
|
|
oversample_foreground_percent=0.33, |
|
|
probabilistic_oversampling=False, |
|
|
print_time=False): |
|
|
pass |
|
|
self.dataset = dataset |
|
|
self.patch_size = patch_size |
|
|
|
|
|
self.batch_size = batch_size |
|
|
self.keys = [i for i in range(len(dataset))] |
|
|
self.thread_id = 0 |
|
|
self.oversample_foreground_percent = oversample_foreground_percent |
|
|
self.need_to_pad = (np.array([0, 0, 0])).astype(int) |
|
|
|
|
|
self.get_do_oversample = self._oversample_last_XX_percent if not probabilistic_oversampling \ |
|
|
else self._probabilistic_oversampling |
|
|
self.data_shape = None |
|
|
self.seg_shape = None |
|
|
self.print_time = print_time |
|
|
|
|
|
def determine_shapes(self): |
|
|
|
|
|
item = self.dataset.__getitem__(0) |
|
|
data, seg, properties = item["data"], item["seg"], item["properties"] |
|
|
num_color_channels = data.shape[0] |
|
|
num_output_channels = seg.shape[0] |
|
|
patch_size = self.patch_size |
|
|
data_shape = (self.batch_size, num_color_channels, patch_size[0], patch_size[1], patch_size[2]) |
|
|
seg_shape = (self.batch_size, num_output_channels, patch_size[0], patch_size[1], patch_size[2]) |
|
|
return data_shape, seg_shape |
|
|
|
|
|
def generate_train_batch(self): |
|
|
|
|
|
selected_keys = np.random.choice(self.keys, self.batch_size, True, None) |
|
|
if self.data_shape is None: |
|
|
self.data_shape, self.seg_shape = self.determine_shapes() |
|
|
|
|
|
data_all = np.zeros(self.data_shape, dtype=np.float32) |
|
|
data_all_global = np.zeros(self.data_shape, dtype=np.float32) |
|
|
seg_all_global = np.zeros(self.seg_shape, dtype=np.float32) |
|
|
data_global = None |
|
|
seg_global = None |
|
|
seg_all = np.zeros(self.seg_shape, dtype=np.float32) |
|
|
|
|
|
case_properties = [] |
|
|
|
|
|
index = 0 |
|
|
for j, key in enumerate(selected_keys): |
|
|
|
|
|
force_fg = self.get_do_oversample(j) |
|
|
s = time.time() |
|
|
item = self.dataset.__getitem__(key) |
|
|
e = time.time() |
|
|
if self.print_time: |
|
|
print(f"read single data time is {e - s}") |
|
|
|
|
|
data, seg, properties = item["data"], item["seg"], item["properties"] |
|
|
|
|
|
if "data_global" in item: |
|
|
data_global = item["data_global"] |
|
|
|
|
|
if "seg_global" in item: |
|
|
seg_global = item["seg_global"] |
|
|
|
|
|
case_properties.append(properties) |
|
|
|
|
|
|
|
|
shape = data.shape[1:] |
|
|
dim = len(shape) |
|
|
|
|
|
s = time.time() |
|
|
bbox_lbs, bbox_ubs = self.get_bbox(shape, force_fg, properties['class_locations']) |
|
|
e = time.time() |
|
|
if self.print_time: |
|
|
print(f"get bbox time is {e - s}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
valid_bbox_lbs = [max(0, bbox_lbs[i]) for i in range(dim)] |
|
|
valid_bbox_ubs = [min(shape[i], bbox_ubs[i]) for i in range(dim)] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
this_slice = tuple([slice(0, data.shape[0])] + [slice(i, j) for i, j in zip(valid_bbox_lbs, valid_bbox_ubs)]) |
|
|
data = data[this_slice] |
|
|
|
|
|
this_slice = tuple([slice(0, seg.shape[0])] + [slice(i, j) for i, j in zip(valid_bbox_lbs, valid_bbox_ubs)]) |
|
|
seg = seg[this_slice] |
|
|
|
|
|
|
|
|
s = time.time() |
|
|
padding = [(-min(0, bbox_lbs[i]), max(bbox_ubs[i] - shape[i], 0)) for i in range(dim)] |
|
|
|
|
|
data_all[j] = np.pad(data, ((0, 0), *padding), 'constant', constant_values=0) |
|
|
seg_all[j] = np.pad(seg, ((0, 0), *padding), 'constant', constant_values=0) |
|
|
|
|
|
if data_global is not None : |
|
|
data_all_global[j] = data_global |
|
|
|
|
|
if seg_global is not None : |
|
|
seg_all_global[j] = seg_global |
|
|
|
|
|
|
|
|
e = time.time() |
|
|
if self.print_time: |
|
|
print(f"box is {bbox_lbs, bbox_ubs}, padding is {padding}") |
|
|
print(f"setting data value time is {e - s}") |
|
|
|
|
|
|
|
|
if data_global is None: |
|
|
return {'data': data_all, |
|
|
'seg': seg_all, 'properties': case_properties, |
|
|
'keys': selected_keys} |
|
|
|
|
|
return {'data': data_all, "data_global": data_all_global, |
|
|
"seg_global": seg_all_global, |
|
|
'seg': seg_all, 'properties': case_properties, |
|
|
'keys': selected_keys} |
|
|
|
|
|
def __next__(self): |
|
|
|
|
|
return self.generate_train_batch() |
|
|
|
|
|
def set_thread_id(self, thread_id): |
|
|
self.thread_id = thread_id |
|
|
|
|
|
def _oversample_last_XX_percent(self, sample_idx: int) -> bool: |
|
|
""" |
|
|
determines whether sample sample_idx in a minibatch needs to be guaranteed foreground |
|
|
""" |
|
|
return not sample_idx < round(self.batch_size * (1 - self.oversample_foreground_percent)) |
|
|
|
|
|
def _probabilistic_oversampling(self, sample_idx: int) -> bool: |
|
|
|
|
|
return np.random.uniform() < self.oversample_foreground_percent |
|
|
|
|
|
def get_bbox(self, data_shape: np.ndarray, force_fg: bool, class_locations: Union[dict, None], |
|
|
overwrite_class: Union[int, Tuple[int, ...]] = None, verbose: bool = False): |
|
|
|
|
|
|
|
|
need_to_pad = self.need_to_pad.copy() |
|
|
dim = len(data_shape) |
|
|
|
|
|
for d in range(dim): |
|
|
|
|
|
|
|
|
if need_to_pad[d] + data_shape[d] < self.patch_size[d]: |
|
|
need_to_pad[d] = self.patch_size[d] - data_shape[d] |
|
|
|
|
|
|
|
|
|
|
|
lbs = [- need_to_pad[i] // 2 for i in range(dim)] |
|
|
ubs = [data_shape[i] + need_to_pad[i] // 2 + need_to_pad[i] % 2 - self.patch_size[i] for i in range(dim)] |
|
|
|
|
|
|
|
|
|
|
|
if not force_fg: |
|
|
bbox_lbs = [np.random.randint(lbs[i], ubs[i] + 1) for i in range(dim)] |
|
|
|
|
|
else: |
|
|
assert class_locations is not None, 'if force_fg is set class_locations cannot be None' |
|
|
if overwrite_class is not None: |
|
|
assert overwrite_class in class_locations.keys(), 'desired class ("overwrite_class") does not ' \ |
|
|
'have class_locations (missing key)' |
|
|
|
|
|
|
|
|
eligible_classes_or_regions = [i for i in class_locations.keys() if len(class_locations[i]) > 0] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if len(eligible_classes_or_regions) == 0: |
|
|
|
|
|
selected_class = None |
|
|
if verbose: |
|
|
print('case does not contain any foreground classes') |
|
|
else: |
|
|
|
|
|
|
|
|
selected_class = eligible_classes_or_regions[np.random.choice(len(eligible_classes_or_regions))] if \ |
|
|
(overwrite_class is None or (overwrite_class not in eligible_classes_or_regions)) else overwrite_class |
|
|
|
|
|
|
|
|
voxels_of_that_class = class_locations[selected_class] if selected_class is not None else None |
|
|
|
|
|
if voxels_of_that_class is not None and len(voxels_of_that_class) > 0: |
|
|
selected_voxel = voxels_of_that_class[np.random.choice(len(voxels_of_that_class))] |
|
|
|
|
|
|
|
|
|
|
|
bbox_lbs = [max(lbs[i], selected_voxel[i + 1] - self.patch_size[i] // 2) for i in range(dim)] |
|
|
else: |
|
|
|
|
|
bbox_lbs = [np.random.randint(lbs[i], ubs[i] + 1) for i in range(dim)] |
|
|
|
|
|
bbox_ubs = [bbox_lbs[i] + self.patch_size[i] for i in range(dim)] |
|
|
|
|
|
return bbox_lbs, bbox_ubs |