|
|
import os |
|
|
import datasets |
|
|
import pandas as pd |
|
|
|
|
|
_DESCRIPTION = """\ |
|
|
This data is CS data |
|
|
""" |
|
|
|
|
|
_CITATION = "Some citation" |
|
|
|
|
|
_data_dir = "data" |
|
|
|
|
|
class CSData(datasets.GeneratorBasedBuilder): |
|
|
|
|
|
def _info(self): |
|
|
return datasets.DatasetInfo( |
|
|
description=_DESCRIPTION, |
|
|
features=datasets.Features( |
|
|
{ |
|
|
"path": datasets.Value("string"), |
|
|
"filename": datasets.Audio(sampling_rate=16_000), |
|
|
"transcription": datasets.Value("string"), |
|
|
} |
|
|
), |
|
|
supervised_keys=None, |
|
|
citation=_CITATION, |
|
|
) |
|
|
|
|
|
def _split_generators(self, dl_manager): |
|
|
download_dir = dl_manager.download_and_extract( |
|
|
{ |
|
|
"files": os.path.join(_data_dir, "files.zip"), |
|
|
"metadata": os.path.join(_data_dir, "metadata.zip") |
|
|
} |
|
|
) |
|
|
|
|
|
return [ |
|
|
datasets.SplitGenerator( |
|
|
name=datasets.Split.TRAIN, |
|
|
gen_kwargs={ |
|
|
"split": datasets.Split.TRAIN, |
|
|
"data_dir": os.path.join(download_dir["files"], "files"), |
|
|
"metapath": os.path.join(download_dir["metadata"], "metadata", "data.csv"), |
|
|
|
|
|
}, |
|
|
), |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
] |
|
|
|
|
|
def _generate_examples(self, data_dir, metapath, split): |
|
|
metadata = pd.read_csv(metapath) |
|
|
for key, row in metadata.iterrows(): |
|
|
audio_path = os.path.join(data_dir, row["filename"]) |
|
|
yield key, { |
|
|
"filename": audio_path, |
|
|
"transcription": row["transcription"], |
|
|
"path": audio_path, |
|
|
} |