Rs9000 commited on
Commit
a72d0de
1 Parent(s): 07565ff

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +66 -2
README.md CHANGED
@@ -41,6 +41,70 @@ dataset_info:
41
  download_size: 54902331553
42
  dataset_size: 127788930013.0
43
  ---
44
- # Dataset Card for "ELSA500k_track2"
45
 
46
- [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
  download_size: 54902331553
42
  dataset_size: 127788930013.0
43
  ---
 
44
 
45
+
46
+ # ELSA - Multimedia use case
47
+
48
+ ![daam.gif](https://cdn-uploads.huggingface.co/production/uploads/6380ccd084022715e0d49d4e/a4Sxbr5E69lox_Z9T3gHI.gif)
49
+
50
+ **ELSA Multimedia is a large collection of Deep Fake images, generated using diffusion models**
51
+
52
+ ### Dataset Summary
53
+
54
+ This dataset was developed as part of the EU project ELSA. Specifically for the Multimedia use-case.
55
+ Official webpage: https://benchmarks.elsa-ai.eu/
56
+ This dataset aims to develop effective solutions for detecting and mitigating the spread of deep fake images in multimedia content. Deep fake images, which are highly realistic and deceptive manipulations, pose significant risks to privacy, security, and trust in digital media. This dataset can be used to train robust and accurate models that can identify and flag instances of deep fake images.
57
+
58
+ ### ELSA versions
59
+
60
+ | Name | Description | Link |
61
+ | ------------- | ------------- | ---------------------|
62
+ | ELSA1M_track1 | Dataset of 1M images generated using diffusion model | https://huggingface.co/datasets/rs9000/ELSA1M_track1 |
63
+ | ELSA500k_track2 | Dataset of 500k images generated using diffusion model with diffusion attentive attribution maps [1] | https://huggingface.co/datasets/rs9000/ELSA500k_track2 |
64
+
65
+
66
+ ```python
67
+ from daam import WordHeatMap
68
+ from datasets import load_dataset
69
+ import torch
70
+
71
+ elsa_data = load_dataset("rs9000/ELSA500k_track2", split="train", streaming=True)
72
+ for sample in elsa_data:
73
+ image = sample.pop("image")
74
+ metadata = sample
75
+ heatmaps = sample.pop("heatmaps")
76
+ heatmap_labels = sample.pop("heatmap_labels")
77
+ for j, (h, l) in enumerate(zip(heatmaps, heatmap_labels)):
78
+ heatmap = WordHeatMap(torch.Tensor(h), word=l)
79
+ heatmap.plot_overlay(image)
80
+ plt.show()
81
+ ```
82
+
83
+ Using <a href="https://huggingface.co/docs/datasets/stream">streaming=True</a> lets you work with the dataset without downloading it.
84
+
85
+ ## Dataset Structure
86
+
87
+ Each parquet file contains nearly 1k images and a JSON file with metadata.
88
+
89
+ The Metadata for generated images are:
90
+
91
+ - ID: Laion image ID
92
+ - original_prompt: Laion Prompt
93
+ - positive_prompt: positive prompt used for image generation
94
+ - negative_prompt: negative prompt used for image generation
95
+ - model: model used for the image generation
96
+ - nsfw: nsfw tag from Laion
97
+ - url_real_image: Url of the real image associated to the same prompt
98
+ - filepath: filepath of the fake image
99
+ - aspect_ratio: aspect ratio of the generated image
100
+ - heatmaps: diffusion attentive attribution maps
101
+ - heatmap_labels: words releated to the heatmaps
102
+
103
+
104
+ ### Dataset Curators
105
+
106
+ - Leonardo Labs (rosario.dicarlo.ext@leonardo.com)
107
+ - UNIMORE (https://aimagelab.ing.unimore.it/imagelab/)
108
+
109
+ ### References
110
+ [1] What the DAAM: Interpreting Stable Diffusion Using Cross Attention, 2023. Tang Raphael et al.