Datasets:
eduagarcia
commited on
Commit
·
1de8de7
1
Parent(s):
1e95b76
Add LeNER-Br dataset
Browse files- portuguese_benchmark.py +171 -0
portuguese_benchmark.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import textwrap
|
2 |
+
import datasets
|
3 |
+
from typing import Dict, List, Optional, Union
|
4 |
+
|
5 |
+
logger = datasets.logging.get_logger(__name__)
|
6 |
+
|
7 |
+
|
8 |
+
_LENERBR_KWARGS = dict(
|
9 |
+
name = "LeNER-Br",
|
10 |
+
description=textwrap.dedent(
|
11 |
+
"""\
|
12 |
+
LeNER-Br is a Portuguese language dataset for named entity recognition applied to legal documents.
|
13 |
+
LeNER-Br consists entirely of manually annotated legislation and legal cases texts and contains tags
|
14 |
+
for persons, locations, time entities, organizations, legislation and legal cases. To compose the dataset,
|
15 |
+
66 legal documents from several Brazilian Courts were collected. Courts of superior and state levels were considered,
|
16 |
+
such as Supremo Tribunal Federal, Superior Tribunal de Justiça, Tribunal de Justiça de Minas Gerais and Tribunal de Contas da União.
|
17 |
+
In addition, four legislation documents were collected, such as "Lei Maria da Penha", giving a total of 70 documents."""
|
18 |
+
),
|
19 |
+
task_type="ner",
|
20 |
+
label_classes=["ORGANIZACAO", "PESSOA", "TEMPO", "LOCAL", "LEGISLACAO", "JURISPRUDENCIA"],
|
21 |
+
data_urls={
|
22 |
+
"train": "https://raw.githubusercontent.com/peluz/lener-br/master/leNER-Br/train/train.conll",
|
23 |
+
"dev": "https://raw.githubusercontent.com/peluz/lener-br/master/leNER-Br/dev/dev.conll",
|
24 |
+
"test": "https://raw.githubusercontent.com/peluz/lener-br/master/leNER-Br/test/test.conll",
|
25 |
+
},
|
26 |
+
citation=textwrap.dedent(
|
27 |
+
"""\
|
28 |
+
@InProceedings{luz_etal_propor2018,
|
29 |
+
author = {Pedro H. {Luz de Araujo} and Te\'{o}filo E. {de Campos} and
|
30 |
+
Renato R. R. {de Oliveira} and Matheus Stauffer and
|
31 |
+
Samuel Couto and Paulo Bermejo},
|
32 |
+
title = {{LeNER-Br}: a Dataset for Named Entity Recognition in {Brazilian} Legal Text},
|
33 |
+
booktitle = {International Conference on the Computational Processing of Portuguese ({PROPOR})},
|
34 |
+
publisher = {Springer},
|
35 |
+
series = {Lecture Notes on Computer Science ({LNCS})},
|
36 |
+
pages = {313--323},
|
37 |
+
year = {2018},
|
38 |
+
month = {September 24-26},
|
39 |
+
address = {Canela, RS, Brazil},
|
40 |
+
doi = {10.1007/978-3-319-99722-3_32},
|
41 |
+
url = {https://teodecampos.github.io/LeNER-Br/},
|
42 |
+
}"""
|
43 |
+
),
|
44 |
+
url="https://teodecampos.github.io/LeNER-Br/",
|
45 |
+
)
|
46 |
+
|
47 |
+
class PTBenchmarkConfig(datasets.BuilderConfig):
|
48 |
+
"""BuilderConfig for PTBenchmark."""
|
49 |
+
|
50 |
+
def __init__(
|
51 |
+
self,
|
52 |
+
task_type,
|
53 |
+
data_urls,
|
54 |
+
citation,
|
55 |
+
url,
|
56 |
+
label_classes=None,
|
57 |
+
process_label=lambda x: x,
|
58 |
+
**kwargs,
|
59 |
+
):
|
60 |
+
"""BuilderConfig for GLUE.
|
61 |
+
Args:
|
62 |
+
text_features: `dict[string, string]`, map from the name of the feature
|
63 |
+
dict for each text field to the name of the column in the tsv file
|
64 |
+
label_column: `string`, name of the column in the tsv file corresponding
|
65 |
+
to the label
|
66 |
+
data_url: `string`, url to download the zip file from
|
67 |
+
data_dir: `string`, the path to the folder containing the tsv files in the
|
68 |
+
downloaded zip
|
69 |
+
citation: `string`, citation for the data set
|
70 |
+
url: `string`, url for information about the data set
|
71 |
+
label_classes: `list[string]`, the list of classes if the label is
|
72 |
+
categorical. If not provided, then the label will be of type
|
73 |
+
`datasets.Value('float32')`.
|
74 |
+
process_label: `Function[string, any]`, function taking in the raw value
|
75 |
+
of the label and processing it to the form required by the label feature
|
76 |
+
**kwargs: keyword arguments forwarded to super.
|
77 |
+
"""
|
78 |
+
super(PTBenchmarkConfig, self).__init__(version=datasets.Version("1.0.3", ""), **kwargs)
|
79 |
+
self.label_classes = label_classes
|
80 |
+
self.task_type = task_type
|
81 |
+
self.data_urls = data_urls
|
82 |
+
self.citation = citation
|
83 |
+
self.url = url
|
84 |
+
self.process_label = process_label
|
85 |
+
|
86 |
+
def _get_ner_dataset_info(config):
|
87 |
+
bio_labels = ["O"]
|
88 |
+
for label_name in config.label_classes:
|
89 |
+
bio_labels.append("B-" + label_name)
|
90 |
+
bio_labels.append("I-" + label_name)
|
91 |
+
return datasets.DatasetInfo(
|
92 |
+
description=config.description,
|
93 |
+
homepage=config.url,
|
94 |
+
citation=config.citation,
|
95 |
+
features=datasets.Features(
|
96 |
+
{
|
97 |
+
"id": datasets.Value("string"),
|
98 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
99 |
+
"ner_tags": datasets.Sequence(
|
100 |
+
datasets.features.ClassLabel(names=bio_labels)
|
101 |
+
),
|
102 |
+
}
|
103 |
+
)
|
104 |
+
)
|
105 |
+
|
106 |
+
def _conll_ner_generator(file_path):
|
107 |
+
with open(file_path, encoding="utf-8") as f:
|
108 |
+
|
109 |
+
guid = 0
|
110 |
+
tokens = []
|
111 |
+
ner_tags = []
|
112 |
+
|
113 |
+
for line in f:
|
114 |
+
if line == "" or line == "\n":
|
115 |
+
if tokens:
|
116 |
+
yield guid, {
|
117 |
+
"id": str(guid),
|
118 |
+
"tokens": tokens,
|
119 |
+
"ner_tags": ner_tags,
|
120 |
+
}
|
121 |
+
guid += 1
|
122 |
+
tokens = []
|
123 |
+
ner_tags = []
|
124 |
+
else:
|
125 |
+
splits = line.split(" ")
|
126 |
+
tokens.append(splits[0])
|
127 |
+
ner_tags.append(splits[1].rstrip())
|
128 |
+
|
129 |
+
# last example
|
130 |
+
yield guid, {
|
131 |
+
"id": str(guid),
|
132 |
+
"tokens": tokens,
|
133 |
+
"ner_tags": ner_tags,
|
134 |
+
}
|
135 |
+
|
136 |
+
|
137 |
+
class PTBenchmark(datasets.GeneratorBasedBuilder):
|
138 |
+
BUILDER_CONFIGS = [
|
139 |
+
PTBenchmarkConfig(
|
140 |
+
**_LENERBR_KWARGS
|
141 |
+
)
|
142 |
+
]
|
143 |
+
|
144 |
+
def _info(self) -> datasets.DatasetInfo:
|
145 |
+
if self.config.task_type == "ner":
|
146 |
+
return _get_ner_dataset_info(self.config)
|
147 |
+
|
148 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager):
|
149 |
+
file_paths = dl_manager.download_and_extract(self.config.data_urls)
|
150 |
+
return [
|
151 |
+
datasets.SplitGenerator(
|
152 |
+
name=datasets.Split.TRAIN,
|
153 |
+
gen_kwargs={"file_path": file_paths["train"]},
|
154 |
+
),
|
155 |
+
datasets.SplitGenerator(
|
156 |
+
name=datasets.Split.VALIDATION,
|
157 |
+
gen_kwargs={"file_path": file_paths["dev"]},
|
158 |
+
),
|
159 |
+
datasets.SplitGenerator(
|
160 |
+
name=datasets.Split.TEST,
|
161 |
+
gen_kwargs={"file_path": file_paths["test"]},
|
162 |
+
)
|
163 |
+
]
|
164 |
+
|
165 |
+
def _generate_examples(
|
166 |
+
self,
|
167 |
+
file_path: Optional[str] = None
|
168 |
+
):
|
169 |
+
logger.info("⏳ Generating examples from = %s", file_path)
|
170 |
+
if self.config.task_type == "ner":
|
171 |
+
yield from _conll_ner_generator(file_path)
|