Update status of cognitivecomputations/WizardLM-30B-Uncensored_eval_request_False_float16_Original to FAILED
Browse files
cognitivecomputations/WizardLM-30B-Uncensored_eval_request_False_float16_Original.json
CHANGED
@@ -8,10 +8,12 @@
|
|
8 |
"architectures": "LlamaForCausalLM",
|
9 |
"weight_type": "Original",
|
10 |
"main_language": "English",
|
11 |
-
"status": "
|
12 |
"submitted_time": "2024-05-22T01:03:18Z",
|
13 |
"model_type": "💬 : chat (RLHF, DPO, IFT, ...)",
|
14 |
"source": "leaderboard",
|
15 |
"job_id": 735,
|
16 |
-
"job_start_time": "2024-05-25T23-11-20.193654"
|
|
|
|
|
17 |
}
|
|
|
8 |
"architectures": "LlamaForCausalLM",
|
9 |
"weight_type": "Original",
|
10 |
"main_language": "English",
|
11 |
+
"status": "FAILED",
|
12 |
"submitted_time": "2024-05-22T01:03:18Z",
|
13 |
"model_type": "💬 : chat (RLHF, DPO, IFT, ...)",
|
14 |
"source": "leaderboard",
|
15 |
"job_id": 735,
|
16 |
+
"job_start_time": "2024-05-25T23-11-20.193654",
|
17 |
+
"error_msg": "CUDA out of memory. Tried to allocate 64.00 MiB. GPU 0 has a total capacty of 79.35 GiB of which 60.19 MiB is free. Process 3627427 has 79.29 GiB memory in use. Of the allocated memory 75.33 GiB is allocated by PyTorch, and 3.46 GiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF",
|
18 |
+
"traceback": "Traceback (most recent call last):\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 198, in wait_download_and_run_request\n run_request(\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 70, in run_request\n results = run_eval_on_model(\n ^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/run_eval.py\", line 60, in run_eval_on_model\n result = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/lm_eval_util.py\", line 145, in evaluate\n results = evaluator.simple_evaluate(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 419, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 159, in simple_evaluate\n results = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 419, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 343, in evaluate\n resps = getattr(lm, reqtype)(cloned_reqs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 1525, in generate_until\n cont = self._model_generate(\n ^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 1070, in _model_generate\n return self.model.generate(\n ^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/utils/_contextlib.py\", line 115, in decorate_context\n return func(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/generation/utils.py\", line 1736, in generate\n result = self._sample(\n ^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/generation/utils.py\", line 2375, in _sample\n outputs = self(\n ^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1518, in _wrapped_call_impl\n return self._call_impl(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1527, in _call_impl\n return forward_call(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/models/llama/modeling_llama.py\", line 1164, in forward\n outputs = self.model(\n ^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1518, in _wrapped_call_impl\n return self._call_impl(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1527, in _call_impl\n return forward_call(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/models/llama/modeling_llama.py\", line 968, in forward\n layer_outputs = decoder_layer(\n ^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1518, in _wrapped_call_impl\n return self._call_impl(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1527, in _call_impl\n return forward_call(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/models/llama/modeling_llama.py\", line 713, in forward\n hidden_states, self_attn_weights, present_key_value = self.self_attn(\n ^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1518, in _wrapped_call_impl\n return self._call_impl(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1527, in _call_impl\n return forward_call(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/models/llama/modeling_llama.py\", line 629, in forward\n key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/cache_utils.py\", line 155, in update\n self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\ntorch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 MiB. GPU 0 has a total capacty of 79.35 GiB of which 60.19 MiB is free. Process 3627427 has 79.29 GiB memory in use. Of the allocated memory 75.33 GiB is allocated by PyTorch, and 3.46 GiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF\n"
|
19 |
}
|