eduagarcia commited on
Commit
ef62ee2
1 Parent(s): 3a0508c

Update status of allenai/tulu-2-dpo-70b_eval_request_False_bfloat16_Original to FAILED

Browse files
allenai/tulu-2-dpo-70b_eval_request_False_bfloat16_Original.json CHANGED
@@ -7,11 +7,13 @@
7
  "params": 68.977,
8
  "architectures": "LlamaForCausalLM",
9
  "weight_type": "Original",
10
- "status": "RUNNING",
11
  "submitted_time": "2024-03-05T16:38:01Z",
12
  "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)",
13
  "source": "leaderboard",
14
  "job_id": 494,
15
  "job_start_time": "2024-04-19T06-31-48.449854",
16
- "main_language": "English"
 
 
17
  }
 
7
  "params": 68.977,
8
  "architectures": "LlamaForCausalLM",
9
  "weight_type": "Original",
10
+ "status": "FAILED",
11
  "submitted_time": "2024-03-05T16:38:01Z",
12
  "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)",
13
  "source": "leaderboard",
14
  "job_id": 494,
15
  "job_start_time": "2024-04-19T06-31-48.449854",
16
+ "main_language": "English",
17
+ "error_msg": "CUDA out of memory. Tried to allocate 448.00 MiB. GPU 0 has a total capacty of 79.35 GiB of which 240.19 MiB is free. Process 3278346 has 79.11 GiB memory in use. Of the allocated memory 78.59 GiB is allocated by PyTorch, and 12.33 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF",
18
+ "traceback": "Traceback (most recent call last):\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 217, in wait_download_and_run_request\n else:\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 69, in run_request\n results = run_eval_on_model(\n ^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/run_eval.py\", line 60, in run_eval_on_model\n result = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/lm_eval_util.py\", line 145, in evaluate\n results = evaluator.simple_evaluate(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 419, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 100, in simple_evaluate\n lm = lm_eval.api.registry.get_model(model).create_from_arg_string(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/api/model.py\", line 134, in create_from_arg_string\n return cls(**args, **args2)\n ^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 297, in __init__\n self._create_model(\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 608, in _create_model\n self._model = self.AUTO_MODEL_CLASS.from_pretrained(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/transformers/src/transformers/models/auto/auto_factory.py\", line 563, in from_pretrained\n return model_class.from_pretrained(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/transformers/src/transformers/modeling_utils.py\", line 3677, in from_pretrained\n ) = cls._load_pretrained_model(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/transformers/src/transformers/modeling_utils.py\", line 4104, in _load_pretrained_model\n new_error_msgs, offload_index, state_dict_index = _load_state_dict_into_meta_model(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/transformers/src/transformers/modeling_utils.py\", line 886, in _load_state_dict_into_meta_model\n set_module_tensor_to_device(model, param_name, param_device, **set_module_kwargs)\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/accelerate/utils/modeling.py\", line 347, in set_module_tensor_to_device\n new_value = value.to(device)\n ^^^^^^^^^^^^^^^^\ntorch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 448.00 MiB. GPU 0 has a total capacty of 79.35 GiB of which 240.19 MiB is free. Process 3278346 has 79.11 GiB memory in use. Of the allocated memory 78.59 GiB is allocated by PyTorch, and 12.33 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF\n"
19
  }