eduagarcia commited on
Commit
e91a368
1 Parent(s): 0e92050

Update dominguesm/mambarim-110m-chat_eval_request_False_float16_Adapter.json

Browse files
dominguesm/mambarim-110m-chat_eval_request_False_float16_Adapter.json CHANGED
@@ -8,12 +8,10 @@
8
  "architectures": "?",
9
  "weight_type": "Adapter",
10
  "main_language": "Portuguese",
11
- "status": "FAILED",
12
  "submitted_time": "2024-05-06T09:36:01Z",
13
  "model_type": "💬 : chat (RLHF, DPO, IFT, ...)",
14
  "source": "leaderboard",
15
  "job_id": 591,
16
- "job_start_time": "2024-05-06T09-38-22.866304",
17
- "error_msg": "Error(s) in loading state_dict for PeftModelForCausalLM:\n\tsize mismatch for base_model.model.backbone.embeddings.base_layer.weight: copying a param with shape torch.Size([32002, 768]) from checkpoint, the shape in current model is torch.Size([32000, 768]).\n\tsize mismatch for base_model.model.backbone.embeddings.lora_embedding_A.default: copying a param with shape torch.Size([8, 32002]) from checkpoint, the shape in current model is torch.Size([8, 32000]).\n\tsize mismatch for base_model.model.lm_head.base_layer.weight: copying a param with shape torch.Size([32002, 768]) from checkpoint, the shape in current model is torch.Size([32000, 768]).\n\tsize mismatch for base_model.model.lm_head.lora_B.default.weight: copying a param with shape torch.Size([32002, 8]) from checkpoint, the shape in current model is torch.Size([32000, 8]).",
18
- "traceback": "Traceback (most recent call last):\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 190, in wait_download_and_run_request\n run_request(\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 69, in run_request\n results = run_eval_on_model(\n ^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/run_eval.py\", line 60, in run_eval_on_model\n result = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/lm_eval_util.py\", line 145, in evaluate\n results = evaluator.simple_evaluate(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 419, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 100, in simple_evaluate\n lm = lm_eval.api.registry.get_model(model).create_from_arg_string(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/api/model.py\", line 134, in create_from_arg_string\n return cls(**args, **args2)\n ^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 297, in __init__\n self._create_model(\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 637, in _create_model\n self._model = PeftModel.from_pretrained(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/peft/peft_model.py\", line 356, in from_pretrained\n model.load_adapter(model_id, adapter_name, is_trainable=is_trainable, **kwargs)\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/peft/peft_model.py\", line 730, in load_adapter\n load_result = set_peft_model_state_dict(self, adapters_weights, adapter_name=adapter_name)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/peft/utils/save_and_load.py\", line 249, in set_peft_model_state_dict\n load_result = model.load_state_dict(peft_model_state_dict, strict=False)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 2153, in load_state_dict\n raise RuntimeError('Error(s) in loading state_dict for {}:\\n\\t{}'.format(\nRuntimeError: Error(s) in loading state_dict for PeftModelForCausalLM:\n\tsize mismatch for base_model.model.backbone.embeddings.base_layer.weight: copying a param with shape torch.Size([32002, 768]) from checkpoint, the shape in current model is torch.Size([32000, 768]).\n\tsize mismatch for base_model.model.backbone.embeddings.lora_embedding_A.default: copying a param with shape torch.Size([8, 32002]) from checkpoint, the shape in current model is torch.Size([8, 32000]).\n\tsize mismatch for base_model.model.lm_head.base_layer.weight: copying a param with shape torch.Size([32002, 768]) from checkpoint, the shape in current model is torch.Size([32000, 768]).\n\tsize mismatch for base_model.model.lm_head.lora_B.default.weight: copying a param with shape torch.Size([32002, 8]) from checkpoint, the shape in current model is torch.Size([32000, 8]).\n"
19
  }
 
8
  "architectures": "?",
9
  "weight_type": "Adapter",
10
  "main_language": "Portuguese",
11
+ "status": "RERUN",
12
  "submitted_time": "2024-05-06T09:36:01Z",
13
  "model_type": "💬 : chat (RLHF, DPO, IFT, ...)",
14
  "source": "leaderboard",
15
  "job_id": 591,
16
+ "job_start_time": "2024-05-06T09-38-22.866304"
 
 
17
  }