eduagarcia
commited on
Commit
•
849d170
1
Parent(s):
6386a4b
Update status of Qwen/Qwen1.5-MoE-A2.7B-Chat_eval_request_False_bfloat16_Original to FAILED
Browse files
Qwen/Qwen1.5-MoE-A2.7B-Chat_eval_request_False_bfloat16_Original.json
CHANGED
@@ -8,10 +8,12 @@
|
|
8 |
"architectures": "Qwen2MoeForCausalLM",
|
9 |
"weight_type": "Original",
|
10 |
"main_language": "English",
|
11 |
-
"status": "
|
12 |
"submitted_time": "2024-04-12T16:19:23Z",
|
13 |
"model_type": "💬 : chat models (RLHF, DPO, IFT, ...)",
|
14 |
"source": "leaderboard",
|
15 |
"job_id": 462,
|
16 |
-
"job_start_time": "2024-04-15T04-45-33.073001"
|
|
|
|
|
17 |
}
|
|
|
8 |
"architectures": "Qwen2MoeForCausalLM",
|
9 |
"weight_type": "Original",
|
10 |
"main_language": "English",
|
11 |
+
"status": "FAILED",
|
12 |
"submitted_time": "2024-04-12T16:19:23Z",
|
13 |
"model_type": "💬 : chat models (RLHF, DPO, IFT, ...)",
|
14 |
"source": "leaderboard",
|
15 |
"job_id": 462,
|
16 |
+
"job_start_time": "2024-04-15T04-45-33.073001",
|
17 |
+
"error_msg": "CUDA out of memory. Tried to allocate 20.00 MiB. GPU 0 has a total capacity of 31.75 GiB of which 7.75 MiB is free. Process 39442 has 31.74 GiB memory in use. Of the allocated memory 25.94 GiB is allocated by PyTorch, and 5.01 GiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)",
|
18 |
+
"traceback": "Traceback (most recent call last):\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 198, in wait_download_and_run_request\n run_request(\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 64, in run_request\n results = run_eval_on_model(\n ^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/run_eval.py\", line 60, in run_eval_on_model\n result = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/lm_eval_util.py\", line 145, in evaluate\n results = evaluator.simple_evaluate(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 419, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 100, in simple_evaluate\n lm = lm_eval.api.registry.get_model(model).create_from_arg_string(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/api/model.py\", line 134, in create_from_arg_string\n return cls(**args, **args2)\n ^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 297, in __init__\n self._create_model(\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 608, in _create_model\n self._model = self.AUTO_MODEL_CLASS.from_pretrained(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/transformers/src/transformers/models/auto/auto_factory.py\", line 563, in from_pretrained\n return model_class.from_pretrained(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/transformers/src/transformers/modeling_utils.py\", line 3677, in from_pretrained\n ) = cls._load_pretrained_model(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/transformers/src/transformers/modeling_utils.py\", line 4104, in _load_pretrained_model\n new_error_msgs, offload_index, state_dict_index = _load_state_dict_into_meta_model(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/transformers/src/transformers/modeling_utils.py\", line 886, in _load_state_dict_into_meta_model\n set_module_tensor_to_device(model, param_name, param_device, **set_module_kwargs)\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/accelerate/utils/modeling.py\", line 399, in set_module_tensor_to_device\n new_value = value.to(device)\n ^^^^^^^^^^^^^^^^\ntorch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU 0 has a total capacity of 31.75 GiB of which 7.75 MiB is free. Process 39442 has 31.74 GiB memory in use. Of the allocated memory 25.94 GiB is allocated by PyTorch, and 5.01 GiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n"
|
19 |
}
|