eduagarcia commited on
Commit
700103c
1 Parent(s): 92d6a4b

Update status of 01-ai/Yi-34B_eval_request_False_bfloat16_Original to FAILED

Browse files
01-ai/Yi-34B_eval_request_False_bfloat16_Original.json CHANGED
@@ -7,7 +7,7 @@
7
  "params": 34.389,
8
  "architectures": "LlamaForCausalLM",
9
  "weight_type": "Original",
10
- "status": "RUNNING",
11
  "submitted_time": "2024-02-05T23:05:39Z",
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
@@ -24,5 +24,7 @@
24
  "sparrow_pt": 0.3916234220734354
25
  },
26
  "result_metrics_average": 0.6416817888200871,
27
- "result_metrics_npm": 0.4958265468665359
 
 
28
  }
 
7
  "params": 34.389,
8
  "architectures": "LlamaForCausalLM",
9
  "weight_type": "Original",
10
+ "status": "FAILED",
11
  "submitted_time": "2024-02-05T23:05:39Z",
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
 
24
  "sparrow_pt": 0.3916234220734354
25
  },
26
  "result_metrics_average": 0.6416817888200871,
27
+ "result_metrics_npm": 0.4958265468665359,
28
+ "error_msg": "CUDA out of memory. Tried to allocate 98.00 MiB. GPU 0 has a total capacty of 79.35 GiB of which 96.19 MiB is free. Process 1027082 has 63.32 GiB memory in use. Process 2746447 has 9.96 GiB memory in use. Process 3815607 has 3.34 GiB memory in use. Process 3812636 has 2.60 GiB memory in use. Process 3812253 has 73.00 MiB memory in use. Of the allocated memory 62.82 GiB is allocated by PyTorch, and 396.00 KiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF",
29
+ "traceback": "Traceback (most recent call last):\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 207, in wait_download_and_run_request\n run_request(\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 64, in run_request\n results = run_eval_on_model(\n ^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/run_eval.py\", line 55, in run_eval_on_model\n result = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/lm_eval_util.py\", line 145, in evaluate\n results = evaluator.simple_evaluate(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 100, in simple_evaluate\n lm = lm_eval.api.registry.get_model(model).create_from_arg_string(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/api/model.py\", line 134, in create_from_arg_string\n return cls(**args, **args2)\n ^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 293, in __init__\n self._create_model(\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 604, in _create_model\n self._model = self.AUTO_MODEL_CLASS.from_pretrained(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/models/auto/auto_factory.py\", line 561, in from_pretrained\n return model_class.from_pretrained(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/modeling_utils.py\", line 3502, in from_pretrained\n ) = cls._load_pretrained_model(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/modeling_utils.py\", line 3926, in _load_pretrained_model\n new_error_msgs, offload_index, state_dict_index = _load_state_dict_into_meta_model(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/modeling_utils.py\", line 805, in _load_state_dict_into_meta_model\n set_module_tensor_to_device(model, param_name, param_device, **set_module_kwargs)\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/accelerate/utils/modeling.py\", line 347, in set_module_tensor_to_device\n new_value = value.to(device)\n ^^^^^^^^^^^^^^^^\ntorch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 98.00 MiB. GPU 0 has a total capacty of 79.35 GiB of which 96.19 MiB is free. Process 1027082 has 63.32 GiB memory in use. Process 2746447 has 9.96 GiB memory in use. Process 3815607 has 3.34 GiB memory in use. Process 3812636 has 2.60 GiB memory in use. Process 3812253 has 73.00 MiB memory in use. Of the allocated memory 62.82 GiB is allocated by PyTorch, and 396.00 KiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF\n"
30
  }