eduagarcia commited on
Commit
5408938
·
verified ·
1 Parent(s): 1d1edad

Update status of WizardLM/WizardLM-13B-V1.2_eval_request_False_float16_Original to FAILED

Browse files
WizardLM/WizardLM-13B-V1.2_eval_request_False_float16_Original.json CHANGED
@@ -7,11 +7,13 @@
7
  "params": 13.0,
8
  "architectures": "LlamaForCausalLM",
9
  "weight_type": "Original",
10
- "status": "RUNNING",
11
  "submitted_time": "2024-03-05T16:38:35Z",
12
  "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)",
13
  "source": "leaderboard",
14
  "job_id": 452,
15
  "job_start_time": "2024-04-15T02-22-32.759333",
16
- "main_language": "English"
 
 
17
  }
 
7
  "params": 13.0,
8
  "architectures": "LlamaForCausalLM",
9
  "weight_type": "Original",
10
+ "status": "FAILED",
11
  "submitted_time": "2024-03-05T16:38:35Z",
12
  "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)",
13
  "source": "leaderboard",
14
  "job_id": 452,
15
  "job_start_time": "2024-04-15T02-22-32.759333",
16
+ "main_language": "English",
17
+ "error_msg": "CUDA out of memory. Tried to allocate 26.00 MiB. GPU 0 has a total capacity of 31.75 GiB of which 3.75 MiB is free. Process 30093 has 30.17 GiB memory in use. Process 75200 has 801.00 MiB memory in use. Process 3080 has 801.00 MiB memory in use. Of the allocated memory 28.37 GiB is allocated by PyTorch, and 897.81 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)",
18
+ "traceback": "Traceback (most recent call last):\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 196, in wait_download_and_run_request\n run_request(\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 65, in run_request\n results = run_eval_on_model(\n ^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/run_eval.py\", line 60, in run_eval_on_model\n result = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/lm_eval_util.py\", line 145, in evaluate\n results = evaluator.simple_evaluate(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 419, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 159, in simple_evaluate\n results = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 419, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 343, in evaluate\n resps = getattr(lm, reqtype)(cloned_reqs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 1518, in generate_until\n cont = self._model_generate(\n ^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 1063, in _model_generate\n return self.model.generate(\n ^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/utils/_contextlib.py\", line 115, in decorate_context\n return func(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/generation/utils.py\", line 1527, in generate\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/generation/utils.py\", line 2411, in _greedy_search\n \" `stopping_criteria=StoppingCriteriaList([MaxLengthCriteria(max_length=max_length)])` instead.\",\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1511, in _wrapped_call_impl\n return self._call_impl(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1520, in _call_impl\n return forward_call(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/models/llama/modeling_llama.py\", line 1196, in forward\n inputs_embeds=inputs_embeds,\n ^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1511, in _wrapped_call_impl\n return self._call_impl(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1520, in _call_impl\n return forward_call(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/models/llama/modeling_llama.py\", line 1016, in forward\n )\n \n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1511, in _wrapped_call_impl\n return self._call_impl(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1520, in _call_impl\n return forward_call(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/models/llama/modeling_llama.py\", line 739, in forward\n hidden_states, self_attn_weights, present_key_value = self.self_attn(\n ^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1511, in _wrapped_call_impl\n return self._call_impl(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1520, in _call_impl\n return forward_call(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/models/llama/modeling_llama.py\", line 653, in forward\n key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/cache_utils.py\", line 146, in update\n self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\ntorch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 26.00 MiB. GPU 0 has a total capacity of 31.75 GiB of which 3.75 MiB is free. Process 30093 has 30.17 GiB memory in use. Process 75200 has 801.00 MiB memory in use. Process 3080 has 801.00 MiB memory in use. Of the allocated memory 28.37 GiB is allocated by PyTorch, and 897.81 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n"
19
  }