eduagarcia commited on
Commit
4e430f3
•
1 Parent(s): 218b9ea

Remove old version evals results (1.0.0)

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitignore +3 -0
  2. 01-ai/Yi-34B-200K_eval_request_False_bfloat16_Original.json +0 -12
  3. 01-ai/Yi-34B_eval_request_False_bfloat16_Original.json +0 -12
  4. 01-ai/Yi-6B-200K_eval_request_False_bfloat16_Original.json +1 -13
  5. 22h/cabrita_7b_pt_850000_eval_request_False_float16_Original.json +1 -13
  6. AI-Sweden-Models/gpt-sw3-20b_eval_request_False_float16_Original.json +1 -13
  7. AI-Sweden-Models/gpt-sw3-6.7b-v2_eval_request_False_float16_Original.json +1 -13
  8. AI-Sweden-Models/gpt-sw3-6.7b_eval_request_False_float16_Original.json +1 -13
  9. BAAI/Aquila-7B_eval_request_False_float16_Original.json +1 -13
  10. BAAI/Aquila2-34B_eval_request_False_bfloat16_Original.json +0 -12
  11. BAAI/Aquila2-7B_eval_request_False_float16_Original.json +1 -13
  12. DAMO-NLP-MT/polylm-1.7b_eval_request_False_float16_Original.json +1 -13
  13. Deci/DeciLM-7B_eval_request_False_bfloat16_Original.json +1 -13
  14. EleutherAI/gpt-j-6b_eval_request_False_float16_Original.json +1 -13
  15. EleutherAI/gpt-neo-1.3B_eval_request_False_float16_Original.json +1 -13
  16. EleutherAI/gpt-neo-125m_eval_request_False_float16_Original.json +1 -13
  17. EleutherAI/gpt-neo-2.7B_eval_request_False_float16_Original.json +1 -13
  18. EleutherAI/gpt-neox-20b_eval_request_False_float16_Original.json +1 -13
  19. EleutherAI/polyglot-ko-12.8b_eval_request_False_float16_Original.json +1 -13
  20. EleutherAI/pythia-12b-deduped_eval_request_False_float16_Original.json +1 -13
  21. EleutherAI/pythia-14m_eval_request_False_float16_Original.json +1 -13
  22. EleutherAI/pythia-160m-deduped_eval_request_False_float16_Original.json +1 -13
  23. EleutherAI/pythia-1b-deduped_eval_request_False_float16_Original.json +1 -13
  24. EleutherAI/pythia-2.8b-deduped_eval_request_False_float16_Original.json +1 -13
  25. EleutherAI/pythia-410m-deduped_eval_request_False_float16_Original.json +1 -13
  26. EleutherAI/pythia-6.9b-deduped_eval_request_False_float16_Original.json +1 -13
  27. EleutherAI/pythia-70m-deduped_eval_request_False_float16_Original.json +1 -13
  28. HeyLucasLeao/gpt-neo-small-portuguese_eval_request_False_float16_Original.json +1 -13
  29. NucleusAI/nucleus-22B-token-500B_eval_request_False_float16_Original.json +1 -13
  30. OpenLLM-France/Claire-7B-0.1_eval_request_False_bfloat16_Original.json +1 -13
  31. OpenLLM-France/Claire-Mistral-7B-0.1_eval_request_False_bfloat16_Original.json +1 -13
  32. OrionStarAI/Orion-14B-Base_eval_request_False_bfloat16_Original.json +1 -13
  33. Skywork/Skywork-13B-base_eval_request_False_bfloat16_Original.json +1 -13
  34. THUDM/chatglm3-6b-base_eval_request_False_float16_Original.json +1 -13
  35. baichuan-inc/Baichuan-7B_eval_request_False_float16_Original.json +1 -13
  36. baichuan-inc/Baichuan2-13B-Base_eval_request_False_bfloat16_Original.json +1 -13
  37. baichuan-inc/Baichuan2-7B-Base_eval_request_False_bfloat16_Original.json +1 -13
  38. bigscience/bloom-3b_eval_request_False_float16_Original.json +1 -13
  39. deepseek-ai/deepseek-llm-67b-base_eval_request_False_bfloat16_Original.json +0 -12
  40. deepseek-ai/deepseek-llm-7b-base_eval_request_False_bfloat16_Original.json +1 -13
  41. deepseek-ai/deepseek-moe-16b-base_eval_request_False_bfloat16_Original.json +1 -13
  42. facebook/opt-1.3b_eval_request_False_float16_Original.json +1 -13
  43. facebook/opt-125m_eval_request_False_float16_Original.json +1 -13
  44. facebook/opt-13b_eval_request_False_float16_Original.json +1 -13
  45. facebook/opt-2.7b_eval_request_False_float16_Original.json +1 -13
  46. facebook/opt-350m_eval_request_False_float16_Original.json +1 -13
  47. google/umt5-base_eval_request_False_bfloat16_Original.json +1 -13
  48. google/umt5-small_eval_request_False_bfloat16_Original.json +1 -13
  49. gpt2_eval_request_False_float16_Original.json +1 -13
  50. huggyllama/llama-30b_eval_request_False_float16_Original.json +0 -12
.gitignore ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ .ipynb_checkpoints
2
+ */.ipynb_checkpoints/*
3
+
01-ai/Yi-34B-200K_eval_request_False_bfloat16_Original.json CHANGED
@@ -13,18 +13,6 @@
13
  "source": "script",
14
  "job_id": 253,
15
  "job_start_time": "2024-02-21T12-10-33.914064",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.7186843946815955,
19
- "bluex": 0.6634214186369958,
20
- "oab_exams": 0.571753986332574,
21
- "assin2_rte": 0.7858403678133732,
22
- "assin2_sts": 0.5583683246827316,
23
- "faquad_nli": 0.7800338409475465,
24
- "sparrow_pt": 0.37142261482383704
25
- },
26
- "result_metrics_average": 0.6356464211312362,
27
- "result_metrics_npm": 0.4967380342980293,
28
  "error_msg": "CUDA out of memory. Tried to allocate 298.02 GiB. GPU 0 has a total capacty of 79.35 GiB of which 14.77 GiB is free. Process 580799 has 64.57 GiB memory in use. Of the allocated memory 64.06 GiB is allocated by PyTorch, and 7.19 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF",
29
  "traceback": "Traceback (most recent call last):\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 191, in wait_download_and_run_request\n run_request(\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 64, in run_request\n results = run_eval_on_model(\n ^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/run_eval.py\", line 55, in run_eval_on_model\n result = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/lm_eval_util.py\", line 145, in evaluate\n results = evaluator.simple_evaluate(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 100, in simple_evaluate\n lm = lm_eval.api.registry.get_model(model).create_from_arg_string(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/api/model.py\", line 134, in create_from_arg_string\n return cls(**args, **args2)\n ^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 293, in __init__\n self._create_model(\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 604, in _create_model\n self._model = self.AUTO_MODEL_CLASS.from_pretrained(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/models/auto/auto_factory.py\", line 561, in from_pretrained\n return model_class.from_pretrained(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/modeling_utils.py\", line 3558, in from_pretrained\n dispatch_model(model, **device_map_kwargs)\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/accelerate/big_modeling.py\", line 445, in dispatch_model\n model.to(device)\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/modeling_utils.py\", line 2556, in to\n return super().to(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1160, in to\n return self._apply(convert)\n ^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 810, in _apply\n module._apply(fn)\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 857, in _apply\n self._buffers[key] = fn(buf)\n ^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1158, in convert\n return t.to(device, dtype if t.is_floating_point() or t.is_complex() else None, non_blocking)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\ntorch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 298.02 GiB. GPU 0 has a total capacty of 79.35 GiB of which 14.77 GiB is free. Process 580799 has 64.57 GiB memory in use. Of the allocated memory 64.06 GiB is allocated by PyTorch, and 7.19 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF\n"
30
  }
 
13
  "source": "script",
14
  "job_id": 253,
15
  "job_start_time": "2024-02-21T12-10-33.914064",
 
 
 
 
 
 
 
 
 
 
 
 
16
  "error_msg": "CUDA out of memory. Tried to allocate 298.02 GiB. GPU 0 has a total capacty of 79.35 GiB of which 14.77 GiB is free. Process 580799 has 64.57 GiB memory in use. Of the allocated memory 64.06 GiB is allocated by PyTorch, and 7.19 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF",
17
  "traceback": "Traceback (most recent call last):\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 191, in wait_download_and_run_request\n run_request(\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 64, in run_request\n results = run_eval_on_model(\n ^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/run_eval.py\", line 55, in run_eval_on_model\n result = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/lm_eval_util.py\", line 145, in evaluate\n results = evaluator.simple_evaluate(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 100, in simple_evaluate\n lm = lm_eval.api.registry.get_model(model).create_from_arg_string(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/api/model.py\", line 134, in create_from_arg_string\n return cls(**args, **args2)\n ^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 293, in __init__\n self._create_model(\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 604, in _create_model\n self._model = self.AUTO_MODEL_CLASS.from_pretrained(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/models/auto/auto_factory.py\", line 561, in from_pretrained\n return model_class.from_pretrained(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/modeling_utils.py\", line 3558, in from_pretrained\n dispatch_model(model, **device_map_kwargs)\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/accelerate/big_modeling.py\", line 445, in dispatch_model\n model.to(device)\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/modeling_utils.py\", line 2556, in to\n return super().to(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1160, in to\n return self._apply(convert)\n ^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 810, in _apply\n module._apply(fn)\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 857, in _apply\n self._buffers[key] = fn(buf)\n ^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1158, in convert\n return t.to(device, dtype if t.is_floating_point() or t.is_complex() else None, non_blocking)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\ntorch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 298.02 GiB. GPU 0 has a total capacty of 79.35 GiB of which 14.77 GiB is free. Process 580799 has 64.57 GiB memory in use. Of the allocated memory 64.06 GiB is allocated by PyTorch, and 7.19 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF\n"
18
  }
01-ai/Yi-34B_eval_request_False_bfloat16_Original.json CHANGED
@@ -13,18 +13,6 @@
13
  "source": "script",
14
  "job_id": 281,
15
  "job_start_time": "2024-02-28T16-27-11.805205",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.7214835549335199,
19
- "bluex": 0.6842837273991655,
20
- "oab_exams": 0.566742596810934,
21
- "assin2_rte": 0.7095337812960236,
22
- "assin2_sts": 0.6212032386293976,
23
- "faquad_nli": 0.7969022005981341,
24
- "sparrow_pt": 0.3916234220734354
25
- },
26
- "result_metrics_average": 0.6416817888200871,
27
- "result_metrics_npm": 0.4958265468665359,
28
  "error_msg": "CUDA out of memory. Tried to allocate 98.00 MiB. GPU 0 has a total capacty of 79.35 GiB of which 96.19 MiB is free. Process 1027082 has 63.32 GiB memory in use. Process 2746447 has 9.96 GiB memory in use. Process 3815607 has 3.34 GiB memory in use. Process 3812636 has 2.60 GiB memory in use. Process 3812253 has 73.00 MiB memory in use. Of the allocated memory 62.82 GiB is allocated by PyTorch, and 396.00 KiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF",
29
  "traceback": "Traceback (most recent call last):\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 207, in wait_download_and_run_request\n run_request(\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 64, in run_request\n results = run_eval_on_model(\n ^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/run_eval.py\", line 55, in run_eval_on_model\n result = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/lm_eval_util.py\", line 145, in evaluate\n results = evaluator.simple_evaluate(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 100, in simple_evaluate\n lm = lm_eval.api.registry.get_model(model).create_from_arg_string(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/api/model.py\", line 134, in create_from_arg_string\n return cls(**args, **args2)\n ^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 293, in __init__\n self._create_model(\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 604, in _create_model\n self._model = self.AUTO_MODEL_CLASS.from_pretrained(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/models/auto/auto_factory.py\", line 561, in from_pretrained\n return model_class.from_pretrained(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/modeling_utils.py\", line 3502, in from_pretrained\n ) = cls._load_pretrained_model(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/modeling_utils.py\", line 3926, in _load_pretrained_model\n new_error_msgs, offload_index, state_dict_index = _load_state_dict_into_meta_model(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/modeling_utils.py\", line 805, in _load_state_dict_into_meta_model\n set_module_tensor_to_device(model, param_name, param_device, **set_module_kwargs)\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/accelerate/utils/modeling.py\", line 347, in set_module_tensor_to_device\n new_value = value.to(device)\n ^^^^^^^^^^^^^^^^\ntorch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 98.00 MiB. GPU 0 has a total capacty of 79.35 GiB of which 96.19 MiB is free. Process 1027082 has 63.32 GiB memory in use. Process 2746447 has 9.96 GiB memory in use. Process 3815607 has 3.34 GiB memory in use. Process 3812636 has 2.60 GiB memory in use. Process 3812253 has 73.00 MiB memory in use. Of the allocated memory 62.82 GiB is allocated by PyTorch, and 396.00 KiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF\n"
30
  }
 
13
  "source": "script",
14
  "job_id": 281,
15
  "job_start_time": "2024-02-28T16-27-11.805205",
 
 
 
 
 
 
 
 
 
 
 
 
16
  "error_msg": "CUDA out of memory. Tried to allocate 98.00 MiB. GPU 0 has a total capacty of 79.35 GiB of which 96.19 MiB is free. Process 1027082 has 63.32 GiB memory in use. Process 2746447 has 9.96 GiB memory in use. Process 3815607 has 3.34 GiB memory in use. Process 3812636 has 2.60 GiB memory in use. Process 3812253 has 73.00 MiB memory in use. Of the allocated memory 62.82 GiB is allocated by PyTorch, and 396.00 KiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF",
17
  "traceback": "Traceback (most recent call last):\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 207, in wait_download_and_run_request\n run_request(\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 64, in run_request\n results = run_eval_on_model(\n ^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/run_eval.py\", line 55, in run_eval_on_model\n result = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/lm_eval_util.py\", line 145, in evaluate\n results = evaluator.simple_evaluate(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 100, in simple_evaluate\n lm = lm_eval.api.registry.get_model(model).create_from_arg_string(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/api/model.py\", line 134, in create_from_arg_string\n return cls(**args, **args2)\n ^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 293, in __init__\n self._create_model(\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 604, in _create_model\n self._model = self.AUTO_MODEL_CLASS.from_pretrained(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/models/auto/auto_factory.py\", line 561, in from_pretrained\n return model_class.from_pretrained(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/modeling_utils.py\", line 3502, in from_pretrained\n ) = cls._load_pretrained_model(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/modeling_utils.py\", line 3926, in _load_pretrained_model\n new_error_msgs, offload_index, state_dict_index = _load_state_dict_into_meta_model(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/modeling_utils.py\", line 805, in _load_state_dict_into_meta_model\n set_module_tensor_to_device(model, param_name, param_device, **set_module_kwargs)\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/accelerate/utils/modeling.py\", line 347, in set_module_tensor_to_device\n new_value = value.to(device)\n ^^^^^^^^^^^^^^^^\ntorch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 98.00 MiB. GPU 0 has a total capacty of 79.35 GiB of which 96.19 MiB is free. Process 1027082 has 63.32 GiB memory in use. Process 2746447 has 9.96 GiB memory in use. Process 3815607 has 3.34 GiB memory in use. Process 3812636 has 2.60 GiB memory in use. Process 3812253 has 73.00 MiB memory in use. Of the allocated memory 62.82 GiB is allocated by PyTorch, and 396.00 KiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF\n"
18
  }
01-ai/Yi-6B-200K_eval_request_False_bfloat16_Original.json CHANGED
@@ -12,17 +12,5 @@
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 121,
15
- "job_start_time": "2024-02-09T07-10-30.923872",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.5703289013296011,
19
- "bluex": 0.49791376912378305,
20
- "oab_exams": 0.4419134396355353,
21
- "assin2_rte": 0.7574463542222696,
22
- "assin2_sts": 0.3059276997249324,
23
- "faquad_nli": 0.4471267110923455,
24
- "sparrow_pt": 0.31180320008181783
25
- },
26
- "result_metrics_average": 0.47606572503004063,
27
- "result_metrics_npm": 0.2713265790562599
28
  }
 
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 121,
15
+ "job_start_time": "2024-02-09T07-10-30.923872"
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
22h/cabrita_7b_pt_850000_eval_request_False_float16_Original.json CHANGED
@@ -12,17 +12,5 @@
12
  "model_type": "🆎 : language adapted models (FP, FT, ...)",
13
  "source": "script",
14
  "job_id": 213,
15
- "job_start_time": "2024-02-16T13-19-48.657595",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.2218334499650105,
19
- "bluex": 0.24895688456189152,
20
- "oab_exams": 0.2783599088838269,
21
- "assin2_rte": 0.6996743545023234,
22
- "assin2_sts": 0.007646758869425693,
23
- "faquad_nli": 0.17721518987341772,
24
- "sparrow_pt": 0.26278701409945776
25
- },
26
- "result_metrics_average": 0.27092479439362194,
27
- "result_metrics_npm": -0.00787880781904908
28
  }
 
12
  "model_type": "🆎 : language adapted models (FP, FT, ...)",
13
  "source": "script",
14
  "job_id": 213,
15
+ "job_start_time": "2024-02-16T13-19-48.657595"
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
AI-Sweden-Models/gpt-sw3-20b_eval_request_False_float16_Original.json CHANGED
@@ -12,17 +12,5 @@
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 102,
15
- "job_start_time": "2024-02-08T16-32-05.080295",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.19454163750874737,
19
- "bluex": 0.21835883171070933,
20
- "oab_exams": 0.24009111617312073,
21
- "assin2_rte": 0.5097556100727492,
22
- "assin2_sts": 0.04176979032426292,
23
- "faquad_nli": 0.4396551724137931,
24
- "sparrow_pt": 0.2261793330522781
25
- },
26
- "result_metrics_average": 0.2671930701793801,
27
- "result_metrics_npm": -0.013569520485616151
28
  }
 
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 102,
15
+ "job_start_time": "2024-02-08T16-32-05.080295"
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
AI-Sweden-Models/gpt-sw3-6.7b-v2_eval_request_False_float16_Original.json CHANGED
@@ -12,17 +12,5 @@
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 101,
15
- "job_start_time": "2024-02-08T15-37-30.575084",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.2344296710986704,
19
- "bluex": 0.2086230876216968,
20
- "oab_exams": 0.23006833712984054,
21
- "assin2_rte": 0.3333333333333333,
22
- "assin2_sts": 0.015469193291869708,
23
- "faquad_nli": 0.4396551724137931,
24
- "sparrow_pt": 0.21165120316324165
25
- },
26
- "result_metrics_average": 0.2390328568646351,
27
- "result_metrics_npm": -0.06725785488427993
28
  }
 
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 101,
15
+ "job_start_time": "2024-02-08T15-37-30.575084"
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
AI-Sweden-Models/gpt-sw3-6.7b_eval_request_False_float16_Original.json CHANGED
@@ -12,17 +12,5 @@
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 100,
15
- "job_start_time": "2024-02-08T14-27-00.255851",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.20363890832750176,
19
- "bluex": 0.24478442280945759,
20
- "oab_exams": 0.23006833712984054,
21
- "assin2_rte": 0.3333333333333333,
22
- "assin2_sts": 0.018735799862626468,
23
- "faquad_nli": 0.4396551724137931,
24
- "sparrow_pt": 0.19168746791328134
25
- },
26
- "result_metrics_average": 0.23741477739854774,
27
- "result_metrics_npm": -0.06966919981551431
28
  }
 
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 100,
15
+ "job_start_time": "2024-02-08T14-27-00.255851"
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
BAAI/Aquila-7B_eval_request_False_float16_Original.json CHANGED
@@ -12,17 +12,5 @@
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 182,
15
- "job_start_time": "2024-02-13T21-53-04.495865",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.3002099370188943,
19
- "bluex": 0.29763560500695413,
20
- "oab_exams": 0.2988610478359909,
21
- "assin2_rte": 0.48191507425133256,
22
- "assin2_sts": 0.2947702523754177,
23
- "faquad_nli": 0.47700641417918904,
24
- "sparrow_pt": 0.2413705187861493
25
- },
26
- "result_metrics_average": 0.341681264207704,
27
- "result_metrics_npm": 0.07218268472291701
28
  }
 
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 182,
15
+ "job_start_time": "2024-02-13T21-53-04.495865"
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
BAAI/Aquila2-34B_eval_request_False_bfloat16_Original.json CHANGED
@@ -13,18 +13,6 @@
13
  "source": "script",
14
  "job_id": 253,
15
  "job_start_time": "2024-02-20T17-38-24.783283",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.543037088873338,
19
- "bluex": 0.4297635605006954,
20
- "oab_exams": 0.3981776765375854,
21
- "assin2_rte": 0.7334164728077959,
22
- "assin2_sts": 0.4958376987221018,
23
- "faquad_nli": 0.45449901481427424,
24
- "sparrow_pt": 0.3121381894628628
25
- },
26
- "result_metrics_average": 0.48098138595980766,
27
- "result_metrics_npm": 0.26782837303937407,
28
  "error_msg": "Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!",
29
  "traceback": "Traceback (most recent call last):\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 191, in wait_download_and_run_request\n run_request(\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 64, in run_request\n results = run_eval_on_model(\n ^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/run_eval.py\", line 55, in run_eval_on_model\n result = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/lm_eval_util.py\", line 145, in evaluate\n results = evaluator.simple_evaluate(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 159, in simple_evaluate\n results = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 343, in evaluate\n resps = getattr(lm, reqtype)(cloned_reqs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 1513, in generate_until\n cont = self._model_generate(\n ^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 1058, in _model_generate\n return self.model.generate(\n ^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/utils/_contextlib.py\", line 115, in decorate_context\n return func(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/generation/utils.py\", line 1524, in generate\n return self.greedy_search(\n ^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/generation/utils.py\", line 2361, in greedy_search\n outputs = self(\n ^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1518, in _wrapped_call_impl\n return self._call_impl(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1527, in _call_impl\n return forward_call(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/accelerate/hooks.py\", line 165, in new_forward\n output = module._old_forward(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/models/llama/modeling_llama.py\", line 1148, in forward\n outputs = self.model(\n ^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1518, in _wrapped_call_impl\n return self._call_impl(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1527, in _call_impl\n return forward_call(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/models/llama/modeling_llama.py\", line 964, in forward\n causal_mask = self._update_causal_mask(attention_mask, inputs_embeds)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/models/llama/modeling_llama.py\", line 1055, in _update_causal_mask\n padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0)\n ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\nRuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!\n"
30
  }
 
13
  "source": "script",
14
  "job_id": 253,
15
  "job_start_time": "2024-02-20T17-38-24.783283",
 
 
 
 
 
 
 
 
 
 
 
 
16
  "error_msg": "Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!",
17
  "traceback": "Traceback (most recent call last):\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 191, in wait_download_and_run_request\n run_request(\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 64, in run_request\n results = run_eval_on_model(\n ^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/run_eval.py\", line 55, in run_eval_on_model\n result = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/lm_eval_util.py\", line 145, in evaluate\n results = evaluator.simple_evaluate(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 159, in simple_evaluate\n results = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 343, in evaluate\n resps = getattr(lm, reqtype)(cloned_reqs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 1513, in generate_until\n cont = self._model_generate(\n ^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 1058, in _model_generate\n return self.model.generate(\n ^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/utils/_contextlib.py\", line 115, in decorate_context\n return func(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/generation/utils.py\", line 1524, in generate\n return self.greedy_search(\n ^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/generation/utils.py\", line 2361, in greedy_search\n outputs = self(\n ^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1518, in _wrapped_call_impl\n return self._call_impl(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1527, in _call_impl\n return forward_call(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/accelerate/hooks.py\", line 165, in new_forward\n output = module._old_forward(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/models/llama/modeling_llama.py\", line 1148, in forward\n outputs = self.model(\n ^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1518, in _wrapped_call_impl\n return self._call_impl(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1527, in _call_impl\n return forward_call(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/models/llama/modeling_llama.py\", line 964, in forward\n causal_mask = self._update_causal_mask(attention_mask, inputs_embeds)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/models/llama/modeling_llama.py\", line 1055, in _update_causal_mask\n padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0)\n ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\nRuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!\n"
18
  }
BAAI/Aquila2-7B_eval_request_False_float16_Original.json CHANGED
@@ -12,17 +12,5 @@
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 183,
15
- "job_start_time": "2024-02-13T23-17-21.976390",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.2470258922323303,
19
- "bluex": 0.20445062586926285,
20
- "oab_exams": 0.2874715261958998,
21
- "assin2_rte": 0.5642307632772472,
22
- "assin2_sts": 0.32002670516594683,
23
- "faquad_nli": 0.46611451506525536,
24
- "sparrow_pt": 0.2587475557591692
25
- },
26
- "result_metrics_average": 0.3354382262235873,
27
- "result_metrics_npm": 0.07112689461870844
28
  }
 
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 183,
15
+ "job_start_time": "2024-02-13T23-17-21.976390"
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
DAMO-NLP-MT/polylm-1.7b_eval_request_False_float16_Original.json CHANGED
@@ -12,17 +12,5 @@
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 215,
15
- "job_start_time": "2024-02-16T14-47-24.223296",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.19244226731980407,
19
- "bluex": 0.24200278164116829,
20
- "oab_exams": 0.24646924829157174,
21
- "assin2_rte": 0.3333333333333333,
22
- "assin2_sts": 0.004714541859212106,
23
- "faquad_nli": 0.4396551724137931,
24
- "sparrow_pt": 0.23356086755006158
25
- },
26
- "result_metrics_average": 0.24173974462984918,
27
- "result_metrics_npm": -0.0625754139616488
28
  }
 
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 215,
15
+ "job_start_time": "2024-02-16T14-47-24.223296"
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
Deci/DeciLM-7B_eval_request_False_bfloat16_Original.json CHANGED
@@ -12,17 +12,5 @@
12
  "model_type": "🔶 : fine-tuned",
13
  "source": "script",
14
  "job_id": 39,
15
- "job_start_time": "2024-02-07T06-30-45.967063",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.529741077676697,
19
- "bluex": 0.41168289290681503,
20
- "oab_exams": 0.3990888382687927,
21
- "assin2_rte": 0.7470003950561543,
22
- "assin2_sts": 0.5145659724171266,
23
- "faquad_nli": 0.7851487912814374,
24
- "sparrow_pt": 0.3532299102024751
25
- },
26
- "result_metrics_average": 0.5343511254013569,
27
- "result_metrics_npm": 0.3640082745590046
28
  }
 
12
  "model_type": "🔶 : fine-tuned",
13
  "source": "script",
14
  "job_id": 39,
15
+ "job_start_time": "2024-02-07T06-30-45.967063"
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
EleutherAI/gpt-j-6b_eval_request_False_float16_Original.json CHANGED
@@ -12,17 +12,5 @@
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 77,
15
- "job_start_time": "2024-02-07T15-56-06.233510",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.21903428971308608,
19
- "bluex": 0.19749652294853964,
20
- "oab_exams": 0.24419134396355352,
21
- "assin2_rte": 0.3512359875045344,
22
- "assin2_sts": 0.09337260889279221,
23
- "faquad_nli": 0.4396551724137931,
24
- "sparrow_pt": 0.19440498214886542
25
- },
26
- "result_metrics_average": 0.24848441536930918,
27
- "result_metrics_npm": -0.05661848481231452
28
  }
 
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 77,
15
+ "job_start_time": "2024-02-07T15-56-06.233510"
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
EleutherAI/gpt-neo-1.3B_eval_request_False_float16_Original.json CHANGED
@@ -12,17 +12,5 @@
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 201,
15
- "job_start_time": "2024-02-14T20-42-35.885763",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.19034289713086075,
19
- "bluex": 0.20445062586926285,
20
- "oab_exams": 0.23462414578587698,
21
- "assin2_rte": 0.3333333333333333,
22
- "assin2_sts": 0.0070782273697892,
23
- "faquad_nli": 0.4396551724137931,
24
- "sparrow_pt": 0.24161040553185745
25
- },
26
- "result_metrics_average": 0.23587068677639625,
27
- "result_metrics_npm": -0.07015978644825559
28
  }
 
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 201,
15
+ "job_start_time": "2024-02-14T20-42-35.885763"
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
EleutherAI/gpt-neo-125m_eval_request_False_float16_Original.json CHANGED
@@ -12,17 +12,5 @@
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 200,
15
- "job_start_time": "2024-02-14T20-18-41.235422",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.18964310706787962,
19
- "bluex": 0.17524339360222532,
20
- "oab_exams": 0.010933940774487472,
21
- "assin2_rte": 0.3333333333333333,
22
- "assin2_sts": 0.10713084465982439,
23
- "faquad_nli": 0.4396551724137931,
24
- "sparrow_pt": 0.171051914297268
25
- },
26
- "result_metrics_average": 0.20385595802125872,
27
- "result_metrics_npm": -0.11828056424440532
28
  }
 
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 200,
15
+ "job_start_time": "2024-02-14T20-18-41.235422"
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
EleutherAI/gpt-neo-2.7B_eval_request_False_float16_Original.json CHANGED
@@ -12,17 +12,5 @@
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 202,
15
- "job_start_time": "2024-02-14T21-23-17.848186",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.1952414275717285,
19
- "bluex": 0.19193324061196107,
20
- "oab_exams": 0.23234624145785876,
21
- "assin2_rte": 0.3333333333333333,
22
- "assin2_sts": 0.006388450736995319,
23
- "faquad_nli": 0.42535491344201753,
24
- "sparrow_pt": 0.26425572526209995
25
- },
26
- "result_metrics_average": 0.2355504760594278,
27
- "result_metrics_npm": -0.0712914298859
28
  }
 
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 202,
15
+ "job_start_time": "2024-02-14T21-23-17.848186"
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
EleutherAI/gpt-neox-20b_eval_request_False_float16_Original.json CHANGED
@@ -12,17 +12,5 @@
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 78,
15
- "job_start_time": "2024-02-07T16-49-06.259210",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.20083974807557733,
19
- "bluex": 0.22531293463143254,
20
- "oab_exams": 0.2560364464692483,
21
- "assin2_rte": 0.3333333333333333,
22
- "assin2_sts": 0.1133653560992191,
23
- "faquad_nli": 0.4718588278919615,
24
- "sparrow_pt": 0.16031340502399352
25
- },
26
- "result_metrics_average": 0.2515800073606808,
27
- "result_metrics_npm": -0.053194066948652974
28
  }
 
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 78,
15
+ "job_start_time": "2024-02-07T16-49-06.259210"
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
EleutherAI/polyglot-ko-12.8b_eval_request_False_float16_Original.json CHANGED
@@ -12,17 +12,5 @@
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 203,
15
- "job_start_time": "2024-02-14T22-19-56.698691",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.06717984604618614,
19
- "bluex": 0.05285118219749652,
20
- "oab_exams": 0.2355353075170843,
21
- "assin2_rte": 0.3333333333333333,
22
- "assin2_sts": 0.019117347817184663,
23
- "faquad_nli": 0.33515801835418463,
24
- "sparrow_pt": 0.2154843220889051
25
- },
26
- "result_metrics_average": 0.17980847962205354,
27
- "result_metrics_npm": -0.15093987610503895
28
  }
 
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 203,
15
+ "job_start_time": "2024-02-14T22-19-56.698691"
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
EleutherAI/pythia-12b-deduped_eval_request_False_float16_Original.json CHANGED
@@ -12,17 +12,5 @@
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 199,
15
- "job_start_time": "2024-02-14T18-51-32.259622",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.1973407977606718,
19
- "bluex": 0.22809457579972184,
20
- "oab_exams": 0.23599088838268792,
21
- "assin2_rte": 0.33424046164366045,
22
- "assin2_sts": 0.062042189457896954,
23
- "faquad_nli": 0.43771626297577854,
24
- "sparrow_pt": 0.23859602003664446
25
- },
26
- "result_metrics_average": 0.24771731372243738,
27
- "result_metrics_npm": -0.05730030865088216
28
  }
 
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 199,
15
+ "job_start_time": "2024-02-14T18-51-32.259622"
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
EleutherAI/pythia-14m_eval_request_False_float16_Original.json CHANGED
@@ -12,17 +12,5 @@
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 192,
15
- "job_start_time": "2024-02-14T15-03-57.922027",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.0,
19
- "bluex": 0.0,
20
- "oab_exams": 0.0,
21
- "assin2_rte": 0.0,
22
- "assin2_sts": NaN,
23
- "faquad_nli": 0.0,
24
- "sparrow_pt": 0.0
25
- },
26
- "result_metrics_average": NaN,
27
- "result_metrics_npm": NaN
28
  }
 
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 192,
15
+ "job_start_time": "2024-02-14T15-03-57.922027"
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
EleutherAI/pythia-160m-deduped_eval_request_False_float16_Original.json CHANGED
@@ -12,17 +12,5 @@
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 194,
15
- "job_start_time": "2024-02-14T15-27-43.932506",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.0,
19
- "bluex": 0.0,
20
- "oab_exams": 0.0,
21
- "assin2_rte": 0.0,
22
- "assin2_sts": NaN,
23
- "faquad_nli": 0.0,
24
- "sparrow_pt": 0.0
25
- },
26
- "result_metrics_average": NaN,
27
- "result_metrics_npm": NaN
28
  }
 
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 194,
15
+ "job_start_time": "2024-02-14T15-27-43.932506"
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
EleutherAI/pythia-1b-deduped_eval_request_False_float16_Original.json CHANGED
@@ -12,17 +12,5 @@
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 196,
15
- "job_start_time": "2024-02-14T16-20-18.432424",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.2106368089573128,
19
- "bluex": 0.18776077885952713,
20
- "oab_exams": 0.24145785876993167,
21
- "assin2_rte": 0.3333333333333333,
22
- "assin2_sts": 0.015287790416728658,
23
- "faquad_nli": 0.4396551724137931,
24
- "sparrow_pt": 0.1527947965732252
25
- },
26
- "result_metrics_average": 0.225846648474836,
27
- "result_metrics_npm": -0.08513497266217881
28
  }
 
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 196,
15
+ "job_start_time": "2024-02-14T16-20-18.432424"
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
EleutherAI/pythia-2.8b-deduped_eval_request_False_float16_Original.json CHANGED
@@ -12,17 +12,5 @@
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 197,
15
- "job_start_time": "2024-02-14T16-49-11.216028",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.20433869839048285,
19
- "bluex": 0.23504867872044508,
20
- "oab_exams": 0.23280182232346242,
21
- "assin2_rte": 0.3333333333333333,
22
- "assin2_sts": 0.032750005063908794,
23
- "faquad_nli": 0.17721518987341772,
24
- "sparrow_pt": 0.2216627443828188
25
- },
26
- "result_metrics_average": 0.20530721029826696,
27
- "result_metrics_npm": -0.13166019646895838
28
  }
 
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 197,
15
+ "job_start_time": "2024-02-14T16-49-11.216028"
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
EleutherAI/pythia-410m-deduped_eval_request_False_float16_Original.json CHANGED
@@ -12,17 +12,5 @@
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 195,
15
- "job_start_time": "2024-02-14T15-42-42.785588",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.1980405878236529,
19
- "bluex": 0.1571627260083449,
20
- "oab_exams": 0.23599088838268792,
21
- "assin2_rte": 0.3333333333333333,
22
- "assin2_sts": 0.0393820346422743,
23
- "faquad_nli": 0.4396551724137931,
24
- "sparrow_pt": 0.16268055200707188
25
- },
26
- "result_metrics_average": 0.22374932780159407,
27
- "result_metrics_npm": -0.08862059215156827
28
  }
 
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 195,
15
+ "job_start_time": "2024-02-14T15-42-42.785588"
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
EleutherAI/pythia-6.9b-deduped_eval_request_False_float16_Original.json CHANGED
@@ -12,17 +12,5 @@
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 198,
15
- "job_start_time": "2024-02-14T17-44-29.767283",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.20503848845346395,
19
- "bluex": 0.21835883171070933,
20
- "oab_exams": 0.2669703872437358,
21
- "assin2_rte": 0.33514630774633175,
22
- "assin2_sts": 0.015459703136524651,
23
- "faquad_nli": 0.5032594590990455,
24
- "sparrow_pt": 0.16024035452533222
25
- },
26
- "result_metrics_average": 0.24349621884502046,
27
- "result_metrics_npm": -0.056880866402642415
28
  }
 
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 198,
15
+ "job_start_time": "2024-02-14T17-44-29.767283"
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
EleutherAI/pythia-70m-deduped_eval_request_False_float16_Original.json CHANGED
@@ -12,17 +12,5 @@
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 193,
15
- "job_start_time": "2024-02-14T15-15-51.530711",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.0,
19
- "bluex": 0.0,
20
- "oab_exams": 0.0,
21
- "assin2_rte": 0.0,
22
- "assin2_sts": NaN,
23
- "faquad_nli": 0.0,
24
- "sparrow_pt": 0.0
25
- },
26
- "result_metrics_average": NaN,
27
- "result_metrics_npm": NaN
28
  }
 
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 193,
15
+ "job_start_time": "2024-02-14T15-15-51.530711"
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
HeyLucasLeao/gpt-neo-small-portuguese_eval_request_False_float16_Original.json CHANGED
@@ -12,17 +12,5 @@
12
  "model_type": "🆎 : language adapted models (FP, FT, ...)",
13
  "source": "script",
14
  "job_id": 93,
15
- "job_start_time": "2024-02-08T01-23-52.798469",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.16235129461161651,
19
- "bluex": 0.11265646731571627,
20
- "oab_exams": 0.008656036446469248,
21
- "assin2_rte": 0.3333333333333333,
22
- "assin2_sts": 0.04753851053349196,
23
- "faquad_nli": 0.4396551724137931,
24
- "sparrow_pt": 0.17064375718073424
25
- },
26
- "result_metrics_average": 0.18211922454787924,
27
- "result_metrics_npm": -0.14372064652620473
28
  }
 
12
  "model_type": "🆎 : language adapted models (FP, FT, ...)",
13
  "source": "script",
14
  "job_id": 93,
15
+ "job_start_time": "2024-02-08T01-23-52.798469"
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
NucleusAI/nucleus-22B-token-500B_eval_request_False_float16_Original.json CHANGED
@@ -12,17 +12,5 @@
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 191,
15
- "job_start_time": "2024-02-14T13-14-20.585602",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.2232330300909727,
19
- "bluex": 0.1808066759388039,
20
- "oab_exams": 0.269248291571754,
21
- "assin2_rte": 0.33965642015109887,
22
- "assin2_sts": 0.14105865232500697,
23
- "faquad_nli": 0.4396551724137931,
24
- "sparrow_pt": 0.14936340466616818
25
- },
26
- "result_metrics_average": 0.2490030924510854,
27
- "result_metrics_npm": -0.05979554926598268
28
  }
 
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 191,
15
+ "job_start_time": "2024-02-14T13-14-20.585602"
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
OpenLLM-France/Claire-7B-0.1_eval_request_False_bfloat16_Original.json CHANGED
@@ -12,17 +12,5 @@
12
  "model_type": "🆎 : language adapted models (FP, FT, ...)",
13
  "source": "script",
14
  "job_id": 105,
15
- "job_start_time": "2024-02-08T19-59-33.207703",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.21203638908327502,
19
- "bluex": 0.24617524339360222,
20
- "oab_exams": 0.24738041002277905,
21
- "assin2_rte": 0.3333333333333333,
22
- "assin2_sts": 0.043451880521346076,
23
- "faquad_nli": 0.4471267110923455,
24
- "sparrow_pt": 0.2339910645108228
25
- },
26
- "result_metrics_average": 0.25192786170821485,
27
- "result_metrics_npm": -0.05055064976935545
28
  }
 
12
  "model_type": "🆎 : language adapted models (FP, FT, ...)",
13
  "source": "script",
14
  "job_id": 105,
15
+ "job_start_time": "2024-02-08T19-59-33.207703"
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
OpenLLM-France/Claire-Mistral-7B-0.1_eval_request_False_bfloat16_Original.json CHANGED
@@ -12,17 +12,5 @@
12
  "model_type": "🆎 : language adapted models (FP, FT, ...)",
13
  "source": "script",
14
  "job_id": 104,
15
- "job_start_time": "2024-02-08T18-48-18.223603",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.5864240727781665,
19
- "bluex": 0.4603616133518776,
20
- "oab_exams": 0.41275626423690204,
21
- "assin2_rte": 0.3930811717227137,
22
- "assin2_sts": 0.5428546315437224,
23
- "faquad_nli": 0.4396551724137931,
24
- "sparrow_pt": 0.26612905967383516
25
- },
26
- "result_metrics_average": 0.4430374265315729,
27
- "result_metrics_npm": 0.18025007075022711
28
  }
 
12
  "model_type": "🆎 : language adapted models (FP, FT, ...)",
13
  "source": "script",
14
  "job_id": 104,
15
+ "job_start_time": "2024-02-08T18-48-18.223603"
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
OrionStarAI/Orion-14B-Base_eval_request_False_bfloat16_Original.json CHANGED
@@ -12,17 +12,5 @@
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 179,
15
- "job_start_time": "2024-02-13T19-40-35.556453",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.6627011896431071,
19
- "bluex": 0.5702364394993046,
20
- "oab_exams": 0.47289293849658315,
21
- "assin2_rte": 0.6307200282684031,
22
- "assin2_sts": 0.5853055022861218,
23
- "faquad_nli": 0.4396551724137931,
24
- "sparrow_pt": 0.32190683171450984
25
- },
26
- "result_metrics_average": 0.5262025860459747,
27
- "result_metrics_npm": 0.3108427262693092
28
  }
 
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 179,
15
+ "job_start_time": "2024-02-13T19-40-35.556453"
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
Skywork/Skywork-13B-base_eval_request_False_bfloat16_Original.json CHANGED
@@ -12,17 +12,5 @@
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 176,
15
- "job_start_time": "2024-02-13T13-13-14.633268",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.6242127361791463,
19
- "bluex": 0.4937413073713491,
20
- "oab_exams": 0.4104783599088838,
21
- "assin2_rte": 0.6640797445169774,
22
- "assin2_sts": 0.109966284351211,
23
- "faquad_nli": 0.5733609182848322,
24
- "sparrow_pt": 0.337302679211532
25
- },
26
- "result_metrics_average": 0.45902028997484745,
27
- "result_metrics_npm": 0.25783808569270167
28
  }
 
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 176,
15
+ "job_start_time": "2024-02-13T13-13-14.633268"
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
THUDM/chatglm3-6b-base_eval_request_False_float16_Original.json CHANGED
@@ -12,17 +12,5 @@
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 184,
15
- "job_start_time": "2024-02-14T00-29-11.353268",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.6081175647305809,
19
- "bluex": 0.49235048678720444,
20
- "oab_exams": 0.40501138952164006,
21
- "assin2_rte": 0.6004172619619615,
22
- "assin2_sts": 0.7205871294107395,
23
- "faquad_nli": 0.8115869651008071,
24
- "sparrow_pt": 0.37512447333212245
25
- },
26
- "result_metrics_average": 0.5733136101207224,
27
- "result_metrics_npm": 0.39293186808439523
28
  }
 
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 184,
15
+ "job_start_time": "2024-02-14T00-29-11.353268"
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
baichuan-inc/Baichuan-7B_eval_request_False_float16_Original.json CHANGED
@@ -12,17 +12,5 @@
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 176,
15
- "job_start_time": "2024-02-13T16-00-29.790614",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.20573827851644508,
19
- "bluex": 0.20584144645340752,
20
- "oab_exams": 0.23690205011389523,
21
- "assin2_rte": 0.3333333333333333,
22
- "assin2_sts": 0.16664859797501688,
23
- "faquad_nli": 0.41377140792945644,
24
- "sparrow_pt": 0.25291474912683454
25
- },
26
- "result_metrics_average": 0.25930712334976985,
27
- "result_metrics_npm": -0.048431144903189324
28
  }
 
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 176,
15
+ "job_start_time": "2024-02-13T16-00-29.790614"
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
baichuan-inc/Baichuan2-13B-Base_eval_request_False_bfloat16_Original.json CHANGED
@@ -12,17 +12,5 @@
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 178,
15
- "job_start_time": "2024-02-13T18-20-08.619292",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.37788663400979705,
19
- "bluex": 0.3129346314325452,
20
- "oab_exams": 0.34943052391799545,
21
- "assin2_rte": 0.5360021760870939,
22
- "assin2_sts": 0.1052548005298192,
23
- "faquad_nli": 0.4396551724137931,
24
- "sparrow_pt": 0.2957930022375439
25
- },
26
- "result_metrics_average": 0.34527956294694107,
27
- "result_metrics_npm": 0.08810495779838001
28
  }
 
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 178,
15
+ "job_start_time": "2024-02-13T18-20-08.619292"
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
baichuan-inc/Baichuan2-7B-Base_eval_request_False_bfloat16_Original.json CHANGED
@@ -12,17 +12,5 @@
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 177,
15
- "job_start_time": "2024-02-13T18-20-08.619747",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.4989503149055283,
19
- "bluex": 0.4019471488178025,
20
- "oab_exams": 0.371753986332574,
21
- "assin2_rte": 0.5418181818181818,
22
- "assin2_sts": 0.18098885021409325,
23
- "faquad_nli": 0.45391686964720673,
24
- "sparrow_pt": 0.24948648514446742
25
- },
26
- "result_metrics_average": 0.3855516909828363,
27
- "result_metrics_npm": 0.137226170969913
28
  }
 
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 177,
15
+ "job_start_time": "2024-02-13T18-20-08.619747"
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
bigscience/bloom-3b_eval_request_False_float16_Original.json CHANGED
@@ -12,17 +12,5 @@
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 27,
15
- "job_start_time": "2024-02-07T01-42-50.987972",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.2001399580125962,
19
- "bluex": 0.18776077885952713,
20
- "oab_exams": 0.25740318906605925,
21
- "assin2_rte": 0.3333333333333333,
22
- "assin2_sts": 0.007784203462752267,
23
- "faquad_nli": 0.4396551724137931,
24
- "sparrow_pt": 0.16983005721811856
25
- },
26
- "result_metrics_average": 0.2279866703380257,
27
- "result_metrics_npm": -0.08159221837126322
28
  }
 
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 27,
15
+ "job_start_time": "2024-02-07T01-42-50.987972"
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
deepseek-ai/deepseek-llm-67b-base_eval_request_False_bfloat16_Original.json CHANGED
@@ -13,18 +13,6 @@
13
  "source": "script",
14
  "job_id": 253,
15
  "job_start_time": "2024-02-20T17-31-20.642276",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.7333799860041987,
19
- "bluex": 0.6244784422809457,
20
- "oab_exams": 0.532118451025057,
21
- "assin2_rte": 0.6950181531654831,
22
- "assin2_sts": 0.5337084187331966,
23
- "faquad_nli": 0.6754332808144468,
24
- "sparrow_pt": 0.36690087459679466
25
- },
26
- "result_metrics_average": 0.5944339438028746,
27
- "result_metrics_npm": 0.4267772506411939,
28
  "error_msg": "Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!",
29
  "traceback": "Traceback (most recent call last):\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 191, in wait_download_and_run_request\n run_request(\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 64, in run_request\n results = run_eval_on_model(\n ^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/run_eval.py\", line 55, in run_eval_on_model\n result = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/lm_eval_util.py\", line 145, in evaluate\n results = evaluator.simple_evaluate(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 159, in simple_evaluate\n results = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 343, in evaluate\n resps = getattr(lm, reqtype)(cloned_reqs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 1513, in generate_until\n cont = self._model_generate(\n ^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 1058, in _model_generate\n return self.model.generate(\n ^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/utils/_contextlib.py\", line 115, in decorate_context\n return func(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/generation/utils.py\", line 1524, in generate\n return self.greedy_search(\n ^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/generation/utils.py\", line 2361, in greedy_search\n outputs = self(\n ^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1518, in _wrapped_call_impl\n return self._call_impl(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1527, in _call_impl\n return forward_call(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/accelerate/hooks.py\", line 165, in new_forward\n output = module._old_forward(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/models/llama/modeling_llama.py\", line 1148, in forward\n outputs = self.model(\n ^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1518, in _wrapped_call_impl\n return self._call_impl(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1527, in _call_impl\n return forward_call(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/models/llama/modeling_llama.py\", line 964, in forward\n causal_mask = self._update_causal_mask(attention_mask, inputs_embeds)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/models/llama/modeling_llama.py\", line 1055, in _update_causal_mask\n padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0)\n ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\nRuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!\n"
30
  }
 
13
  "source": "script",
14
  "job_id": 253,
15
  "job_start_time": "2024-02-20T17-31-20.642276",
 
 
 
 
 
 
 
 
 
 
 
 
16
  "error_msg": "Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!",
17
  "traceback": "Traceback (most recent call last):\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 191, in wait_download_and_run_request\n run_request(\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 64, in run_request\n results = run_eval_on_model(\n ^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/run_eval.py\", line 55, in run_eval_on_model\n result = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/lm_eval_util.py\", line 145, in evaluate\n results = evaluator.simple_evaluate(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 159, in simple_evaluate\n results = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 343, in evaluate\n resps = getattr(lm, reqtype)(cloned_reqs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 1513, in generate_until\n cont = self._model_generate(\n ^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 1058, in _model_generate\n return self.model.generate(\n ^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/utils/_contextlib.py\", line 115, in decorate_context\n return func(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/generation/utils.py\", line 1524, in generate\n return self.greedy_search(\n ^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/generation/utils.py\", line 2361, in greedy_search\n outputs = self(\n ^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1518, in _wrapped_call_impl\n return self._call_impl(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1527, in _call_impl\n return forward_call(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/accelerate/hooks.py\", line 165, in new_forward\n output = module._old_forward(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/models/llama/modeling_llama.py\", line 1148, in forward\n outputs = self.model(\n ^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1518, in _wrapped_call_impl\n return self._call_impl(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1527, in _call_impl\n return forward_call(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/models/llama/modeling_llama.py\", line 964, in forward\n causal_mask = self._update_causal_mask(attention_mask, inputs_embeds)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/models/llama/modeling_llama.py\", line 1055, in _update_causal_mask\n padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0)\n ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\nRuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!\n"
18
  }
deepseek-ai/deepseek-llm-7b-base_eval_request_False_bfloat16_Original.json CHANGED
@@ -12,17 +12,5 @@
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 180,
15
- "job_start_time": "2024-02-13T20-08-54.493662",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.4086773967809657,
19
- "bluex": 0.3908205841446453,
20
- "oab_exams": 0.35353075170842824,
21
- "assin2_rte": 0.36087257670772555,
22
- "assin2_sts": 0.3246306803889829,
23
- "faquad_nli": 0.4396551724137931,
24
- "sparrow_pt": 0.3046492630055339
25
- },
26
- "result_metrics_average": 0.3689766321642964,
27
- "result_metrics_npm": 0.0918381264358727
28
  }
 
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 180,
15
+ "job_start_time": "2024-02-13T20-08-54.493662"
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
deepseek-ai/deepseek-moe-16b-base_eval_request_False_bfloat16_Original.json CHANGED
@@ -12,17 +12,5 @@
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 181,
15
- "job_start_time": "2024-02-13T21-07-50.712249",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.36599020293911827,
19
- "bluex": 0.3087621696801113,
20
- "oab_exams": 0.3316628701594533,
21
- "assin2_rte": 0.3669298673297707,
22
- "assin2_sts": 0.2023483280938947,
23
- "faquad_nli": 0.45391686964720673,
24
- "sparrow_pt": 0.24294255630381092
25
- },
26
- "result_metrics_average": 0.32465040916476656,
27
- "result_metrics_npm": 0.0404271761205112
28
  }
 
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 181,
15
+ "job_start_time": "2024-02-13T21-07-50.712249"
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
facebook/opt-1.3b_eval_request_False_float16_Original.json CHANGED
@@ -12,17 +12,5 @@
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 81,
15
- "job_start_time": "2024-02-07T17-55-47.448141",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.20643806857942618,
19
- "bluex": 0.20305980528511822,
20
- "oab_exams": 0.2296127562642369,
21
- "assin2_rte": 0.3333333333333333,
22
- "assin2_sts": 0.014294092039832406,
23
- "faquad_nli": 0.4396551724137931,
24
- "sparrow_pt": 0.23645916821985138
25
- },
26
- "result_metrics_average": 0.2375503423050845,
27
- "result_metrics_npm": -0.06850955080705787
28
  }
 
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 81,
15
+ "job_start_time": "2024-02-07T17-55-47.448141"
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
facebook/opt-125m_eval_request_False_float16_Original.json CHANGED
@@ -12,17 +12,5 @@
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 79,
15
- "job_start_time": "2024-02-07T17-00-47.502507",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.20363890832750176,
19
- "bluex": 0.18219749652294853,
20
- "oab_exams": 0.0009111617312072893,
21
- "assin2_rte": 0.3333333333333333,
22
- "assin2_sts": 0.045915967954967385,
23
- "faquad_nli": 0.4396551724137931,
24
- "sparrow_pt": 0.16100858918916303
25
- },
26
- "result_metrics_average": 0.19523723278184493,
27
- "result_metrics_npm": -0.12718865648894817
28
  }
 
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 79,
15
+ "job_start_time": "2024-02-07T17-00-47.502507"
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
facebook/opt-13b_eval_request_False_float16_Original.json CHANGED
@@ -12,17 +12,5 @@
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 84,
15
- "job_start_time": "2024-02-07T19-29-22.779324",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.18964310706787962,
19
- "bluex": 0.20584144645340752,
20
- "oab_exams": 0.23416856492027335,
21
- "assin2_rte": 0.3333333333333333,
22
- "assin2_sts": 0.013938417309944717,
23
- "faquad_nli": 0.4396551724137931,
24
- "sparrow_pt": 0.18566533417845207
25
- },
26
- "result_metrics_average": 0.22889219652529766,
27
- "result_metrics_npm": -0.08047151398067605
28
  }
 
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 84,
15
+ "job_start_time": "2024-02-07T19-29-22.779324"
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
facebook/opt-2.7b_eval_request_False_float16_Original.json CHANGED
@@ -12,17 +12,5 @@
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 82,
15
- "job_start_time": "2024-02-07T18-37-10.420552",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.19384184744576627,
19
- "bluex": 0.19193324061196107,
20
- "oab_exams": 0.2296127562642369,
21
- "assin2_rte": 0.3333333333333333,
22
- "assin2_sts": 0.016315511418924157,
23
- "faquad_nli": 0.4396551724137931,
24
- "sparrow_pt": 0.2232283026501764
25
- },
26
- "result_metrics_average": 0.23256002344831303,
27
- "result_metrics_npm": -0.07520210793362635
28
  }
 
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 82,
15
+ "job_start_time": "2024-02-07T18-37-10.420552"
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
facebook/opt-350m_eval_request_False_float16_Original.json CHANGED
@@ -12,17 +12,5 @@
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 80,
15
- "job_start_time": "2024-02-07T17-20-17.729922",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.20363890832750176,
19
- "bluex": 0.13351877607788595,
20
- "oab_exams": 0.00683371298405467,
21
- "assin2_rte": 0.3333333333333333,
22
- "assin2_sts": 0.018818660102831564,
23
- "faquad_nli": 0.4396551724137931,
24
- "sparrow_pt": 0.2158151928608465
25
- },
26
- "result_metrics_average": 0.1930876794428924,
27
- "result_metrics_npm": -0.12779893672772347
28
  }
 
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 80,
15
+ "job_start_time": "2024-02-07T17-20-17.729922"
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
google/umt5-base_eval_request_False_bfloat16_Original.json CHANGED
@@ -12,17 +12,5 @@
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 206,
15
- "job_start_time": "2024-02-15T05-17-17.944550",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.02939118264520644,
19
- "bluex": 0.022253129346314324,
20
- "oab_exams": 0.08337129840546698,
21
- "assin2_rte": 0.008049597487606372,
22
- "assin2_sts": 0.11702145458274152,
23
- "faquad_nli": 0.005177993527508091,
24
- "sparrow_pt": 0.06908735918169881
25
- },
26
- "result_metrics_average": 0.04776457359664892,
27
- "result_metrics_npm": -0.38758303220535195
28
  }
 
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 206,
15
+ "job_start_time": "2024-02-15T05-17-17.944550"
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
google/umt5-small_eval_request_False_bfloat16_Original.json CHANGED
@@ -12,17 +12,5 @@
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 205,
15
- "job_start_time": "2024-02-15T02-03-26.881523",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.09447165850244926,
19
- "bluex": 0.02642559109874826,
20
- "oab_exams": 0.1489749430523918,
21
- "assin2_rte": 0.19257980378257433,
22
- "assin2_sts": 0.043458369255268595,
23
- "faquad_nli": 0.014741228752745068,
24
- "sparrow_pt": 0.011063279665311027
25
- },
26
- "result_metrics_average": 0.07595926772992691,
27
- "result_metrics_npm": -0.32972887684471675
28
  }
 
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 205,
15
+ "job_start_time": "2024-02-15T02-03-26.881523"
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
gpt2_eval_request_False_float16_Original.json CHANGED
@@ -12,17 +12,5 @@
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 187,
15
- "job_start_time": "2024-02-14T01-24-06.058943",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.1364590622813156,
19
- "bluex": 0.1933240611961057,
20
- "oab_exams": 0.21685649202733484,
21
- "assin2_rte": 0.3333333333333333,
22
- "assin2_sts": 0.039726178664430394,
23
- "faquad_nli": 0.4396551724137931,
24
- "sparrow_pt": 0.1782807939159107
25
- },
26
- "result_metrics_average": 0.21966215626174623,
27
- "result_metrics_npm": -0.09338594948484692
28
  }
 
12
  "model_type": "🟢 : pretrained",
13
  "source": "script",
14
  "job_id": 187,
15
+ "job_start_time": "2024-02-14T01-24-06.058943"
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
huggyllama/llama-30b_eval_request_False_float16_Original.json CHANGED
@@ -13,18 +13,6 @@
13
  "source": "script",
14
  "job_id": 253,
15
  "job_start_time": "2024-02-21T12-12-04.504997",
16
- "eval_version": "1.0.0",
17
- "result_metrics": {
18
- "enem_challenge": 0.6186144156752974,
19
- "bluex": 0.5034770514603616,
20
- "oab_exams": 0.4214123006833713,
21
- "assin2_rte": 0.6994823029869264,
22
- "assin2_sts": 0.521939545377829,
23
- "faquad_nli": 0.5100755946706865,
24
- "sparrow_pt": 0.32914824721309877
25
- },
26
- "result_metrics_average": 0.514878494009653,
27
- "result_metrics_npm": 0.3114125756635208,
28
  "error_msg": "Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!",
29
  "traceback": "Traceback (most recent call last):\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 191, in wait_download_and_run_request\n run_request(\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 64, in run_request\n results = run_eval_on_model(\n ^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/run_eval.py\", line 55, in run_eval_on_model\n result = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/lm_eval_util.py\", line 145, in evaluate\n results = evaluator.simple_evaluate(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 159, in simple_evaluate\n results = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 343, in evaluate\n resps = getattr(lm, reqtype)(cloned_reqs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 1513, in generate_until\n cont = self._model_generate(\n ^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 1058, in _model_generate\n return self.model.generate(\n ^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/utils/_contextlib.py\", line 115, in decorate_context\n return func(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/generation/utils.py\", line 1524, in generate\n return self.greedy_search(\n ^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/generation/utils.py\", line 2361, in greedy_search\n outputs = self(\n ^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1518, in _wrapped_call_impl\n return self._call_impl(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1527, in _call_impl\n return forward_call(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/accelerate/hooks.py\", line 165, in new_forward\n output = module._old_forward(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/models/llama/modeling_llama.py\", line 1148, in forward\n outputs = self.model(\n ^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1518, in _wrapped_call_impl\n return self._call_impl(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1527, in _call_impl\n return forward_call(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/models/llama/modeling_llama.py\", line 964, in forward\n causal_mask = self._update_causal_mask(attention_mask, inputs_embeds)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/models/llama/modeling_llama.py\", line 1055, in _update_causal_mask\n padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0)\n ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\nRuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!\n"
30
  }
 
13
  "source": "script",
14
  "job_id": 253,
15
  "job_start_time": "2024-02-21T12-12-04.504997",
 
 
 
 
 
 
 
 
 
 
 
 
16
  "error_msg": "Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!",
17
  "traceback": "Traceback (most recent call last):\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 191, in wait_download_and_run_request\n run_request(\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 64, in run_request\n results = run_eval_on_model(\n ^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/run_eval.py\", line 55, in run_eval_on_model\n result = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/lm_eval_util.py\", line 145, in evaluate\n results = evaluator.simple_evaluate(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 159, in simple_evaluate\n results = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 343, in evaluate\n resps = getattr(lm, reqtype)(cloned_reqs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 1513, in generate_until\n cont = self._model_generate(\n ^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 1058, in _model_generate\n return self.model.generate(\n ^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/utils/_contextlib.py\", line 115, in decorate_context\n return func(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/generation/utils.py\", line 1524, in generate\n return self.greedy_search(\n ^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/generation/utils.py\", line 2361, in greedy_search\n outputs = self(\n ^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1518, in _wrapped_call_impl\n return self._call_impl(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1527, in _call_impl\n return forward_call(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/accelerate/hooks.py\", line 165, in new_forward\n output = module._old_forward(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/models/llama/modeling_llama.py\", line 1148, in forward\n outputs = self.model(\n ^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1518, in _wrapped_call_impl\n return self._call_impl(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/torch/nn/modules/module.py\", line 1527, in _call_impl\n return forward_call(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/models/llama/modeling_llama.py\", line 964, in forward\n causal_mask = self._update_causal_mask(attention_mask, inputs_embeds)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/models/llama/modeling_llama.py\", line 1055, in _update_causal_mask\n padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0)\n ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\nRuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!\n"
18
  }