eduagarcia commited on
Commit
4bcf4ac
1 Parent(s): 7913d3d

Update status of Qwen/Qwen1.5-110B-Chat_eval_request_False_4bit_Original to FAILED

Browse files
Qwen/Qwen1.5-110B-Chat_eval_request_False_4bit_Original.json CHANGED
@@ -8,10 +8,12 @@
8
  "architectures": "Qwen2ForCausalLM",
9
  "weight_type": "Original",
10
  "main_language": "English",
11
- "status": "RUNNING",
12
  "submitted_time": "2024-05-23T02:02:06Z",
13
  "model_type": "💬 : chat (RLHF, DPO, IFT, ...)",
14
  "source": "leaderboard",
15
  "job_id": 701,
16
- "job_start_time": "2024-05-23T02-17-33.226353"
 
 
17
  }
 
8
  "architectures": "Qwen2ForCausalLM",
9
  "weight_type": "Original",
10
  "main_language": "English",
11
+ "status": "FAILED",
12
  "submitted_time": "2024-05-23T02:02:06Z",
13
  "model_type": "💬 : chat (RLHF, DPO, IFT, ...)",
14
  "source": "leaderboard",
15
  "job_id": 701,
16
+ "job_start_time": "2024-05-23T02-17-33.226353",
17
+ "error_msg": "CUDA out of memory. Tried to allocate 192.00 MiB. GPU 0 has a total capacty of 79.35 GiB of which 38.38 GiB is free. Process 4041472 has 40.97 GiB memory in use. Of the allocated memory 39.49 GiB is allocated by PyTorch, and 13.07 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF",
18
+ "traceback": "Traceback (most recent call last):\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 200, in wait_download_and_run_request\n run_request(\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 70, in run_request\n results = run_eval_on_model(\n ^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/run_eval.py\", line 60, in run_eval_on_model\n result = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/lm_eval_util.py\", line 145, in evaluate\n results = evaluator.simple_evaluate(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 419, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 100, in simple_evaluate\n lm = lm_eval.api.registry.get_model(model).create_from_arg_string(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/api/model.py\", line 134, in create_from_arg_string\n return cls(**args, **args2)\n ^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 304, in __init__\n self._create_model(\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 616, in _create_model\n self._model = self.AUTO_MODEL_CLASS.from_pretrained(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/models/auto/auto_factory.py\", line 563, in from_pretrained\n return model_class.from_pretrained(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/modeling_utils.py\", line 3754, in from_pretrained\n ) = cls._load_pretrained_model(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/modeling_utils.py\", line 4214, in _load_pretrained_model\n new_error_msgs, offload_index, state_dict_index = _load_state_dict_into_meta_model(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/modeling_utils.py\", line 889, in _load_state_dict_into_meta_model\n hf_quantizer.create_quantized_param(model, param, param_name, param_device, state_dict, unexpected_keys)\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/quantizers/quantizer_bnb_4bit.py\", line 216, in create_quantized_param\n new_value = bnb.nn.Params4bit(new_value, requires_grad=False, **kwargs).to(target_device)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/bitsandbytes/nn/modules.py\", line 324, in to\n return self._quantize(device)\n ^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/bitsandbytes/nn/modules.py\", line 289, in _quantize\n w_4bit, quant_state = bnb.functional.quantize_4bit(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/bitsandbytes/functional.py\", line 1169, in quantize_4bit\n out = torch.zeros(((n + 1) // mod, 1), dtype=quant_storage, device=A.device)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\ntorch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 192.00 MiB. GPU 0 has a total capacty of 79.35 GiB of which 38.38 GiB is free. Process 4041472 has 40.97 GiB memory in use. Of the allocated memory 39.49 GiB is allocated by PyTorch, and 13.07 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF\n"
19
  }