eduagarcia commited on
Commit
41ee522
β€’
1 Parent(s): aa3eb77

Retry 20 FAILED models

Browse files
01-ai/Yi-34B-200K_eval_request_False_bfloat16_Original.json CHANGED
@@ -7,13 +7,11 @@
7
  "params": 34.389,
8
  "architectures": "LlamaForCausalLM",
9
  "weight_type": "Original",
10
- "status": "FAILED",
11
  "submitted_time": "2024-02-05T23:18:19Z",
12
  "model_type": "🟒 : pretrained",
13
  "source": "script",
14
  "job_id": 402,
15
  "job_start_time": "2024-04-07T23-13-07.604084",
16
- "main_language": "English",
17
- "error_msg": "CUDA error: invalid resource handle\nCUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.\nFor debugging consider passing CUDA_LAUNCH_BLOCKING=1.\nCompile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.\n",
18
- "traceback": "Traceback (most recent call last):\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 190, in wait_download_and_run_request\n run_request(\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 64, in run_request\n results = run_eval_on_model(\n ^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/run_eval.py\", line 55, in run_eval_on_model\n result = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/lm_eval_util.py\", line 145, in evaluate\n results = evaluator.simple_evaluate(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 159, in simple_evaluate\n results = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 343, in evaluate\n resps = getattr(lm, reqtype)(cloned_reqs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 1426, in generate_until\n batch_size, _ = self._detect_batch_size_and_length()\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 815, in _detect_batch_size_and_length\n batch_size, max_length = forward_batch()\n ^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 144, in decorator\n return function(batch_size, max_length, *args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 806, in forward_batch\n test_batch = torch.ones(\n ^^^^^^^^^^^\nRuntimeError: CUDA error: invalid resource handle\nCUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.\nFor debugging consider passing CUDA_LAUNCH_BLOCKING=1.\nCompile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.\n\n"
19
  }
 
7
  "params": 34.389,
8
  "architectures": "LlamaForCausalLM",
9
  "weight_type": "Original",
10
+ "status": "RERUN",
11
  "submitted_time": "2024-02-05T23:18:19Z",
12
  "model_type": "🟒 : pretrained",
13
  "source": "script",
14
  "job_id": 402,
15
  "job_start_time": "2024-04-07T23-13-07.604084",
16
+ "main_language": "English"
 
 
17
  }
01-ai/Yi-34B_eval_request_False_bfloat16_Original.json CHANGED
@@ -7,13 +7,11 @@
7
  "params": 34.389,
8
  "architectures": "LlamaForCausalLM",
9
  "weight_type": "Original",
10
- "status": "FAILED",
11
  "submitted_time": "2024-02-05T23:05:39Z",
12
  "model_type": "🟒 : pretrained",
13
  "source": "script",
14
  "job_id": 401,
15
  "job_start_time": "2024-04-07T22-50-08.495180",
16
- "main_language": "English",
17
- "error_msg": "CUDA error: invalid resource handle\nCUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.\nFor debugging consider passing CUDA_LAUNCH_BLOCKING=1.\nCompile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.\n",
18
- "traceback": "Traceback (most recent call last):\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 190, in wait_download_and_run_request\n run_request(\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 64, in run_request\n results = run_eval_on_model(\n ^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/run_eval.py\", line 55, in run_eval_on_model\n result = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/lm_eval_util.py\", line 145, in evaluate\n results = evaluator.simple_evaluate(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 159, in simple_evaluate\n results = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 343, in evaluate\n resps = getattr(lm, reqtype)(cloned_reqs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 1426, in generate_until\n batch_size, _ = self._detect_batch_size_and_length()\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 815, in _detect_batch_size_and_length\n batch_size, max_length = forward_batch()\n ^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 144, in decorator\n return function(batch_size, max_length, *args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 806, in forward_batch\n test_batch = torch.ones(\n ^^^^^^^^^^^\nRuntimeError: CUDA error: invalid resource handle\nCUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.\nFor debugging consider passing CUDA_LAUNCH_BLOCKING=1.\nCompile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.\n\n"
19
  }
 
7
  "params": 34.389,
8
  "architectures": "LlamaForCausalLM",
9
  "weight_type": "Original",
10
+ "status": "RERUN",
11
  "submitted_time": "2024-02-05T23:05:39Z",
12
  "model_type": "🟒 : pretrained",
13
  "source": "script",
14
  "job_id": 401,
15
  "job_start_time": "2024-04-07T22-50-08.495180",
16
+ "main_language": "English"
 
 
17
  }
CohereForAI/c4ai-command-r-plus_eval_request_False_float16_Original.json CHANGED
@@ -8,12 +8,10 @@
8
  "architectures": "CohereForCausalLM",
9
  "weight_type": "Original",
10
  "main_language": "English",
11
- "status": "FAILED",
12
  "submitted_time": "2024-04-07T18:08:25Z",
13
  "model_type": "πŸ’¬ : chat models (RLHF, DPO, IFT, ...)",
14
  "source": "leaderboard",
15
  "job_id": 397,
16
- "job_start_time": "2024-04-07T22-22-02.610892",
17
- "error_msg": "CUDA error: invalid resource handle\nCUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.\nFor debugging consider passing CUDA_LAUNCH_BLOCKING=1.\nCompile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.\n",
18
- "traceback": "Traceback (most recent call last):\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 190, in wait_download_and_run_request\n run_request(\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 64, in run_request\n results = run_eval_on_model(\n ^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/run_eval.py\", line 55, in run_eval_on_model\n result = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/lm_eval_util.py\", line 145, in evaluate\n results = evaluator.simple_evaluate(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 159, in simple_evaluate\n results = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 343, in evaluate\n resps = getattr(lm, reqtype)(cloned_reqs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 1426, in generate_until\n batch_size, _ = self._detect_batch_size_and_length()\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 815, in _detect_batch_size_and_length\n batch_size, max_length = forward_batch()\n ^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 144, in decorator\n return function(batch_size, max_length, *args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 806, in forward_batch\n test_batch = torch.ones(\n ^^^^^^^^^^^\nRuntimeError: CUDA error: invalid resource handle\nCUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.\nFor debugging consider passing CUDA_LAUNCH_BLOCKING=1.\nCompile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.\n\n"
19
  }
 
8
  "architectures": "CohereForCausalLM",
9
  "weight_type": "Original",
10
  "main_language": "English",
11
+ "status": "RERUN",
12
  "submitted_time": "2024-04-07T18:08:25Z",
13
  "model_type": "πŸ’¬ : chat models (RLHF, DPO, IFT, ...)",
14
  "source": "leaderboard",
15
  "job_id": 397,
16
+ "job_start_time": "2024-04-07T22-22-02.610892"
 
 
17
  }
THUDM/LongAlign-6B-64k-base_eval_request_False_bfloat16_Original.json CHANGED
@@ -8,12 +8,10 @@
8
  "architectures": "ChatGLMForConditionalGeneration",
9
  "weight_type": "Original",
10
  "main_language": "Chinese",
11
- "status": "FAILED",
12
  "submitted_time": "2024-04-05T13:06:23Z",
13
  "model_type": "πŸ”Ά : fine-tuned/fp on domain-specific datasets",
14
  "source": "leaderboard",
15
  "job_id": 409,
16
- "job_start_time": "2024-04-08T00-36-03.008471",
17
- "error_msg": "CUDA error: invalid resource handle\nCUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.\nFor debugging consider passing CUDA_LAUNCH_BLOCKING=1.\nCompile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.\n",
18
- "traceback": "Traceback (most recent call last):\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 190, in wait_download_and_run_request\n run_request(\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 64, in run_request\n results = run_eval_on_model(\n ^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/run_eval.py\", line 55, in run_eval_on_model\n result = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/lm_eval_util.py\", line 145, in evaluate\n results = evaluator.simple_evaluate(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 159, in simple_evaluate\n results = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 343, in evaluate\n resps = getattr(lm, reqtype)(cloned_reqs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 1426, in generate_until\n batch_size, _ = self._detect_batch_size_and_length()\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 815, in _detect_batch_size_and_length\n batch_size, max_length = forward_batch()\n ^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 144, in decorator\n return function(batch_size, max_length, *args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 806, in forward_batch\n test_batch = torch.ones(\n ^^^^^^^^^^^\nRuntimeError: CUDA error: invalid resource handle\nCUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.\nFor debugging consider passing CUDA_LAUNCH_BLOCKING=1.\nCompile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.\n\n"
19
  }
 
8
  "architectures": "ChatGLMForConditionalGeneration",
9
  "weight_type": "Original",
10
  "main_language": "Chinese",
11
+ "status": "RERUN",
12
  "submitted_time": "2024-04-05T13:06:23Z",
13
  "model_type": "πŸ”Ά : fine-tuned/fp on domain-specific datasets",
14
  "source": "leaderboard",
15
  "job_id": 409,
16
+ "job_start_time": "2024-04-08T00-36-03.008471"
 
 
17
  }
THUDM/LongAlign-6B-64k_eval_request_False_bfloat16_Original.json CHANGED
@@ -8,12 +8,10 @@
8
  "architectures": "ChatGLMForConditionalGeneration",
9
  "weight_type": "Original",
10
  "main_language": "Chinese",
11
- "status": "FAILED",
12
  "submitted_time": "2024-04-05T13:05:29Z",
13
  "model_type": "πŸ’¬ : chat models (RLHF, DPO, IFT, ...)",
14
  "source": "leaderboard",
15
  "job_id": 408,
16
- "job_start_time": "2024-04-08T00-26-55.880613",
17
- "error_msg": "CUDA error: invalid resource handle\nCUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.\nFor debugging consider passing CUDA_LAUNCH_BLOCKING=1.\nCompile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.\n",
18
- "traceback": "Traceback (most recent call last):\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 190, in wait_download_and_run_request\n run_request(\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 64, in run_request\n results = run_eval_on_model(\n ^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/run_eval.py\", line 55, in run_eval_on_model\n result = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/lm_eval_util.py\", line 145, in evaluate\n results = evaluator.simple_evaluate(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 159, in simple_evaluate\n results = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 343, in evaluate\n resps = getattr(lm, reqtype)(cloned_reqs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 1426, in generate_until\n batch_size, _ = self._detect_batch_size_and_length()\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 815, in _detect_batch_size_and_length\n batch_size, max_length = forward_batch()\n ^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 144, in decorator\n return function(batch_size, max_length, *args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 806, in forward_batch\n test_batch = torch.ones(\n ^^^^^^^^^^^\nRuntimeError: CUDA error: invalid resource handle\nCUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.\nFor debugging consider passing CUDA_LAUNCH_BLOCKING=1.\nCompile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.\n\n"
19
  }
 
8
  "architectures": "ChatGLMForConditionalGeneration",
9
  "weight_type": "Original",
10
  "main_language": "Chinese",
11
+ "status": "RERUN",
12
  "submitted_time": "2024-04-05T13:05:29Z",
13
  "model_type": "πŸ’¬ : chat models (RLHF, DPO, IFT, ...)",
14
  "source": "leaderboard",
15
  "job_id": 408,
16
+ "job_start_time": "2024-04-08T00-26-55.880613"
 
 
17
  }
THUDM/LongAlign-7B-64k_eval_request_False_float16_Original.json CHANGED
@@ -8,12 +8,10 @@
8
  "architectures": "LlamaForCausalLM",
9
  "weight_type": "Original",
10
  "main_language": "Chinese",
11
- "status": "FAILED",
12
  "submitted_time": "2024-04-05T13:07:16Z",
13
  "model_type": "πŸ’¬ : chat models (RLHF, DPO, IFT, ...)",
14
  "source": "leaderboard",
15
  "job_id": 411,
16
- "job_start_time": "2024-04-08T00-57-52.922110",
17
- "error_msg": "CUDA error: invalid resource handle\nCUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.\nFor debugging consider passing CUDA_LAUNCH_BLOCKING=1.\nCompile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.\n",
18
- "traceback": "Traceback (most recent call last):\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 190, in wait_download_and_run_request\n run_request(\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 64, in run_request\n results = run_eval_on_model(\n ^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/run_eval.py\", line 55, in run_eval_on_model\n result = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/lm_eval_util.py\", line 145, in evaluate\n results = evaluator.simple_evaluate(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 159, in simple_evaluate\n results = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 343, in evaluate\n resps = getattr(lm, reqtype)(cloned_reqs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 1426, in generate_until\n batch_size, _ = self._detect_batch_size_and_length()\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 815, in _detect_batch_size_and_length\n batch_size, max_length = forward_batch()\n ^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 144, in decorator\n return function(batch_size, max_length, *args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 806, in forward_batch\n test_batch = torch.ones(\n ^^^^^^^^^^^\nRuntimeError: CUDA error: invalid resource handle\nCUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.\nFor debugging consider passing CUDA_LAUNCH_BLOCKING=1.\nCompile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.\n\n"
19
  }
 
8
  "architectures": "LlamaForCausalLM",
9
  "weight_type": "Original",
10
  "main_language": "Chinese",
11
+ "status": "RERUN",
12
  "submitted_time": "2024-04-05T13:07:16Z",
13
  "model_type": "πŸ’¬ : chat models (RLHF, DPO, IFT, ...)",
14
  "source": "leaderboard",
15
  "job_id": 411,
16
+ "job_start_time": "2024-04-08T00-57-52.922110"
 
 
17
  }
THUDM/agentlm-7b_eval_request_False_float16_Original.json CHANGED
@@ -8,12 +8,10 @@
8
  "architectures": "LlamaForCausalLM",
9
  "weight_type": "Original",
10
  "main_language": "Chinese",
11
- "status": "FAILED",
12
  "submitted_time": "2024-04-05T13:06:53Z",
13
  "model_type": "πŸ’¬ : chat models (RLHF, DPO, IFT, ...)",
14
  "source": "leaderboard",
15
  "job_id": 410,
16
- "job_start_time": "2024-04-08T00-48-25.592214",
17
- "error_msg": "CUDA error: invalid resource handle\nCUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.\nFor debugging consider passing CUDA_LAUNCH_BLOCKING=1.\nCompile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.\n",
18
- "traceback": "Traceback (most recent call last):\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 190, in wait_download_and_run_request\n run_request(\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 64, in run_request\n results = run_eval_on_model(\n ^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/run_eval.py\", line 55, in run_eval_on_model\n result = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/lm_eval_util.py\", line 145, in evaluate\n results = evaluator.simple_evaluate(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 159, in simple_evaluate\n results = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 343, in evaluate\n resps = getattr(lm, reqtype)(cloned_reqs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 1426, in generate_until\n batch_size, _ = self._detect_batch_size_and_length()\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 815, in _detect_batch_size_and_length\n batch_size, max_length = forward_batch()\n ^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 144, in decorator\n return function(batch_size, max_length, *args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 806, in forward_batch\n test_batch = torch.ones(\n ^^^^^^^^^^^\nRuntimeError: CUDA error: invalid resource handle\nCUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.\nFor debugging consider passing CUDA_LAUNCH_BLOCKING=1.\nCompile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.\n\n"
19
  }
 
8
  "architectures": "LlamaForCausalLM",
9
  "weight_type": "Original",
10
  "main_language": "Chinese",
11
+ "status": "RERUN",
12
  "submitted_time": "2024-04-05T13:06:53Z",
13
  "model_type": "πŸ’¬ : chat models (RLHF, DPO, IFT, ...)",
14
  "source": "leaderboard",
15
  "job_id": 410,
16
+ "job_start_time": "2024-04-08T00-48-25.592214"
 
 
17
  }
THUDM/chatglm3-6b-128k_eval_request_False_float16_Original.json CHANGED
@@ -8,12 +8,10 @@
8
  "architectures": "ChatGLMModel",
9
  "weight_type": "Original",
10
  "main_language": "Chinese",
11
- "status": "FAILED",
12
  "submitted_time": "2024-04-05T13:04:28Z",
13
  "model_type": "πŸ’¬ : chat models (RLHF, DPO, IFT, ...)",
14
  "source": "leaderboard",
15
  "job_id": 407,
16
- "job_start_time": "2024-04-08T00-15-13.741582",
17
- "error_msg": "CUDA error: invalid resource handle\nCUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.\nFor debugging consider passing CUDA_LAUNCH_BLOCKING=1.\nCompile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.\n",
18
- "traceback": "Traceback (most recent call last):\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 190, in wait_download_and_run_request\n run_request(\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 64, in run_request\n results = run_eval_on_model(\n ^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/run_eval.py\", line 55, in run_eval_on_model\n result = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/lm_eval_util.py\", line 145, in evaluate\n results = evaluator.simple_evaluate(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 159, in simple_evaluate\n results = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 343, in evaluate\n resps = getattr(lm, reqtype)(cloned_reqs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 1426, in generate_until\n batch_size, _ = self._detect_batch_size_and_length()\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 815, in _detect_batch_size_and_length\n batch_size, max_length = forward_batch()\n ^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 144, in decorator\n return function(batch_size, max_length, *args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 806, in forward_batch\n test_batch = torch.ones(\n ^^^^^^^^^^^\nRuntimeError: CUDA error: invalid resource handle\nCUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.\nFor debugging consider passing CUDA_LAUNCH_BLOCKING=1.\nCompile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.\n\n"
19
  }
 
8
  "architectures": "ChatGLMModel",
9
  "weight_type": "Original",
10
  "main_language": "Chinese",
11
+ "status": "RERUN",
12
  "submitted_time": "2024-04-05T13:04:28Z",
13
  "model_type": "πŸ’¬ : chat models (RLHF, DPO, IFT, ...)",
14
  "source": "leaderboard",
15
  "job_id": 407,
16
+ "job_start_time": "2024-04-08T00-15-13.741582"
 
 
17
  }
WizardLM/WizardLM-13B-V1.2_eval_request_False_float16_Original.json CHANGED
@@ -7,13 +7,11 @@
7
  "params": 13.0,
8
  "architectures": "LlamaForCausalLM",
9
  "weight_type": "Original",
10
- "status": "FAILED",
11
  "submitted_time": "2024-03-05T16:38:35Z",
12
  "model_type": "πŸ’¬ : chat models (RLHF, DPO, IFT, ...)",
13
  "source": "leaderboard",
14
  "job_id": 405,
15
  "job_start_time": "2024-04-07T23-57-22.053764",
16
- "main_language": "English",
17
- "error_msg": "CUDA error: invalid resource handle\nCUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.\nFor debugging consider passing CUDA_LAUNCH_BLOCKING=1.\nCompile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.\n",
18
- "traceback": "Traceback (most recent call last):\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 190, in wait_download_and_run_request\n run_request(\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 64, in run_request\n results = run_eval_on_model(\n ^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/run_eval.py\", line 55, in run_eval_on_model\n result = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/lm_eval_util.py\", line 145, in evaluate\n results = evaluator.simple_evaluate(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 159, in simple_evaluate\n results = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 343, in evaluate\n resps = getattr(lm, reqtype)(cloned_reqs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 1426, in generate_until\n batch_size, _ = self._detect_batch_size_and_length()\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 815, in _detect_batch_size_and_length\n batch_size, max_length = forward_batch()\n ^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 144, in decorator\n return function(batch_size, max_length, *args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 806, in forward_batch\n test_batch = torch.ones(\n ^^^^^^^^^^^\nRuntimeError: CUDA error: invalid resource handle\nCUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.\nFor debugging consider passing CUDA_LAUNCH_BLOCKING=1.\nCompile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.\n\n"
19
  }
 
7
  "params": 13.0,
8
  "architectures": "LlamaForCausalLM",
9
  "weight_type": "Original",
10
+ "status": "RERUN",
11
  "submitted_time": "2024-03-05T16:38:35Z",
12
  "model_type": "πŸ’¬ : chat models (RLHF, DPO, IFT, ...)",
13
  "source": "leaderboard",
14
  "job_id": 405,
15
  "job_start_time": "2024-04-07T23-57-22.053764",
16
+ "main_language": "English"
 
 
17
  }
WizardLM/WizardLM-70B-V1.0_eval_request_False_float16_Original.json CHANGED
@@ -7,13 +7,11 @@
7
  "params": 70.0,
8
  "architectures": "LlamaForCausalLM",
9
  "weight_type": "Original",
10
- "status": "FAILED",
11
  "submitted_time": "2024-03-05T16:39:12Z",
12
  "model_type": "πŸ’¬ : chat models (RLHF, DPO, IFT, ...)",
13
  "source": "leaderboard",
14
  "job_id": 395,
15
  "job_start_time": "2024-04-07T21-40-48.839120",
16
- "main_language": "English",
17
- "error_msg": "CUDA error: invalid resource handle\nCUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.\nFor debugging consider passing CUDA_LAUNCH_BLOCKING=1.\nCompile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.\n",
18
- "traceback": "Traceback (most recent call last):\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 190, in wait_download_and_run_request\n run_request(\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 64, in run_request\n results = run_eval_on_model(\n ^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/run_eval.py\", line 55, in run_eval_on_model\n result = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/lm_eval_util.py\", line 145, in evaluate\n results = evaluator.simple_evaluate(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 159, in simple_evaluate\n results = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 343, in evaluate\n resps = getattr(lm, reqtype)(cloned_reqs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 1426, in generate_until\n batch_size, _ = self._detect_batch_size_and_length()\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 815, in _detect_batch_size_and_length\n batch_size, max_length = forward_batch()\n ^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 144, in decorator\n return function(batch_size, max_length, *args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 806, in forward_batch\n test_batch = torch.ones(\n ^^^^^^^^^^^\nRuntimeError: CUDA error: invalid resource handle\nCUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.\nFor debugging consider passing CUDA_LAUNCH_BLOCKING=1.\nCompile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.\n\n"
19
  }
 
7
  "params": 70.0,
8
  "architectures": "LlamaForCausalLM",
9
  "weight_type": "Original",
10
+ "status": "RERUN",
11
  "submitted_time": "2024-03-05T16:39:12Z",
12
  "model_type": "πŸ’¬ : chat models (RLHF, DPO, IFT, ...)",
13
  "source": "leaderboard",
14
  "job_id": 395,
15
  "job_start_time": "2024-04-07T21-40-48.839120",
16
+ "main_language": "English"
 
 
17
  }
WizardLM/WizardLM-7B-V1.0_eval_request_False_float16_Original.json CHANGED
@@ -7,13 +7,11 @@
7
  "params": 7.0,
8
  "architectures": "LlamaForCausalLM",
9
  "weight_type": "Original",
10
- "status": "FAILED",
11
  "submitted_time": "2024-03-05T16:38:21Z",
12
  "model_type": "πŸ’¬ : chat models (RLHF, DPO, IFT, ...)",
13
  "source": "leaderboard",
14
  "job_id": 404,
15
  "job_start_time": "2024-04-07T23-45-16.474936",
16
- "main_language": "English",
17
- "error_msg": "CUDA error: invalid resource handle\nCUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.\nFor debugging consider passing CUDA_LAUNCH_BLOCKING=1.\nCompile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.\n",
18
- "traceback": "Traceback (most recent call last):\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 190, in wait_download_and_run_request\n run_request(\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 64, in run_request\n results = run_eval_on_model(\n ^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/run_eval.py\", line 55, in run_eval_on_model\n result = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/lm_eval_util.py\", line 145, in evaluate\n results = evaluator.simple_evaluate(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 159, in simple_evaluate\n results = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 343, in evaluate\n resps = getattr(lm, reqtype)(cloned_reqs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 1426, in generate_until\n batch_size, _ = self._detect_batch_size_and_length()\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 815, in _detect_batch_size_and_length\n batch_size, max_length = forward_batch()\n ^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 144, in decorator\n return function(batch_size, max_length, *args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 806, in forward_batch\n test_batch = torch.ones(\n ^^^^^^^^^^^\nRuntimeError: CUDA error: invalid resource handle\nCUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.\nFor debugging consider passing CUDA_LAUNCH_BLOCKING=1.\nCompile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.\n\n"
19
  }
 
7
  "params": 7.0,
8
  "architectures": "LlamaForCausalLM",
9
  "weight_type": "Original",
10
+ "status": "RERUN",
11
  "submitted_time": "2024-03-05T16:38:21Z",
12
  "model_type": "πŸ’¬ : chat models (RLHF, DPO, IFT, ...)",
13
  "source": "leaderboard",
14
  "job_id": 404,
15
  "job_start_time": "2024-04-07T23-45-16.474936",
16
+ "main_language": "English"
 
 
17
  }
abacusai/Smaug-34B-v0.1_eval_request_False_bfloat16_Original.json CHANGED
@@ -7,13 +7,11 @@
7
  "params": 34.389,
8
  "architectures": "LlamaForCausalLM",
9
  "weight_type": "Original",
10
- "status": "FAILED",
11
  "submitted_time": "2024-02-28T18:41:24Z",
12
  "model_type": "πŸ’¬ : chat models (RLHF, DPO, IFT, ...)",
13
  "source": "leaderboard",
14
  "job_id": 403,
15
  "job_start_time": "2024-04-07T23-20-35.018779",
16
- "main_language": "English",
17
- "error_msg": "CUDA error: invalid resource handle\nCUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.\nFor debugging consider passing CUDA_LAUNCH_BLOCKING=1.\nCompile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.\n",
18
- "traceback": "Traceback (most recent call last):\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 190, in wait_download_and_run_request\n run_request(\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 64, in run_request\n results = run_eval_on_model(\n ^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/run_eval.py\", line 55, in run_eval_on_model\n result = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/lm_eval_util.py\", line 145, in evaluate\n results = evaluator.simple_evaluate(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 159, in simple_evaluate\n results = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 343, in evaluate\n resps = getattr(lm, reqtype)(cloned_reqs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 1426, in generate_until\n batch_size, _ = self._detect_batch_size_and_length()\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 815, in _detect_batch_size_and_length\n batch_size, max_length = forward_batch()\n ^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 144, in decorator\n return function(batch_size, max_length, *args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 806, in forward_batch\n test_batch = torch.ones(\n ^^^^^^^^^^^\nRuntimeError: CUDA error: invalid resource handle\nCUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.\nFor debugging consider passing CUDA_LAUNCH_BLOCKING=1.\nCompile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.\n\n"
19
  }
 
7
  "params": 34.389,
8
  "architectures": "LlamaForCausalLM",
9
  "weight_type": "Original",
10
+ "status": "RERUN",
11
  "submitted_time": "2024-02-28T18:41:24Z",
12
  "model_type": "πŸ’¬ : chat models (RLHF, DPO, IFT, ...)",
13
  "source": "leaderboard",
14
  "job_id": 403,
15
  "job_start_time": "2024-04-07T23-20-35.018779",
16
+ "main_language": "English"
 
 
17
  }
ai21labs/Jamba-v0.1_eval_request_False_bfloat16_Original.json CHANGED
@@ -8,12 +8,10 @@
8
  "architectures": "JambaForCausalLM",
9
  "weight_type": "Original",
10
  "main_language": "English",
11
- "status": "FAILED",
12
  "submitted_time": "2024-04-07T15:38:46Z",
13
  "model_type": "πŸ’¬ : chat models (RLHF, DPO, IFT, ...)",
14
  "source": "leaderboard",
15
  "job_id": 400,
16
- "job_start_time": "2024-04-07T22-43-24.760307",
17
- "error_msg": "CUDA error: invalid resource handle\nCUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.\nFor debugging consider passing CUDA_LAUNCH_BLOCKING=1.\nCompile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.\n",
18
- "traceback": "Traceback (most recent call last):\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 190, in wait_download_and_run_request\n run_request(\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 64, in run_request\n results = run_eval_on_model(\n ^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/run_eval.py\", line 55, in run_eval_on_model\n result = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/lm_eval_util.py\", line 145, in evaluate\n results = evaluator.simple_evaluate(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 159, in simple_evaluate\n results = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 343, in evaluate\n resps = getattr(lm, reqtype)(cloned_reqs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 1426, in generate_until\n batch_size, _ = self._detect_batch_size_and_length()\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 815, in _detect_batch_size_and_length\n batch_size, max_length = forward_batch()\n ^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 144, in decorator\n return function(batch_size, max_length, *args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 806, in forward_batch\n test_batch = torch.ones(\n ^^^^^^^^^^^\nRuntimeError: CUDA error: invalid resource handle\nCUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.\nFor debugging consider passing CUDA_LAUNCH_BLOCKING=1.\nCompile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.\n\n"
19
  }
 
8
  "architectures": "JambaForCausalLM",
9
  "weight_type": "Original",
10
  "main_language": "English",
11
+ "status": "RERUN",
12
  "submitted_time": "2024-04-07T15:38:46Z",
13
  "model_type": "πŸ’¬ : chat models (RLHF, DPO, IFT, ...)",
14
  "source": "leaderboard",
15
  "job_id": 400,
16
+ "job_start_time": "2024-04-07T22-43-24.760307"
 
 
17
  }
allenai/tulu-2-dpo-70b_eval_request_False_bfloat16_Original.json CHANGED
@@ -7,13 +7,11 @@
7
  "params": 68.977,
8
  "architectures": "LlamaForCausalLM",
9
  "weight_type": "Original",
10
- "status": "FAILED",
11
  "submitted_time": "2024-03-05T16:38:01Z",
12
  "model_type": "πŸ’¬ : chat models (RLHF, DPO, IFT, ...)",
13
  "source": "leaderboard",
14
  "job_id": 396,
15
  "job_start_time": "2024-04-07T22-13-42.595768",
16
- "main_language": "English",
17
- "error_msg": "CUDA error: invalid resource handle\nCUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.\nFor debugging consider passing CUDA_LAUNCH_BLOCKING=1.\nCompile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.\n",
18
- "traceback": "Traceback (most recent call last):\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 190, in wait_download_and_run_request\n run_request(\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 64, in run_request\n results = run_eval_on_model(\n ^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/run_eval.py\", line 55, in run_eval_on_model\n result = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/lm_eval_util.py\", line 145, in evaluate\n results = evaluator.simple_evaluate(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 159, in simple_evaluate\n results = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 343, in evaluate\n resps = getattr(lm, reqtype)(cloned_reqs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 1426, in generate_until\n batch_size, _ = self._detect_batch_size_and_length()\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 815, in _detect_batch_size_and_length\n batch_size, max_length = forward_batch()\n ^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 144, in decorator\n return function(batch_size, max_length, *args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 806, in forward_batch\n test_batch = torch.ones(\n ^^^^^^^^^^^\nRuntimeError: CUDA error: invalid resource handle\nCUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.\nFor debugging consider passing CUDA_LAUNCH_BLOCKING=1.\nCompile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.\n\n"
19
  }
 
7
  "params": 68.977,
8
  "architectures": "LlamaForCausalLM",
9
  "weight_type": "Original",
10
+ "status": "RERUN",
11
  "submitted_time": "2024-03-05T16:38:01Z",
12
  "model_type": "πŸ’¬ : chat models (RLHF, DPO, IFT, ...)",
13
  "source": "leaderboard",
14
  "job_id": 396,
15
  "job_start_time": "2024-04-07T22-13-42.595768",
16
+ "main_language": "English"
 
 
17
  }
botbot-ai/Cabra-72b_eval_request_False_bfloat16_Original.json CHANGED
@@ -8,12 +8,10 @@
8
  "architectures": "Qwen2ForCausalLM",
9
  "weight_type": "Original",
10
  "main_language": "Portuguese",
11
- "status": "FAILED",
12
  "submitted_time": "2024-04-06T22:02:03Z",
13
  "model_type": "πŸ”Ά : fine-tuned/fp on domain-specific datasets",
14
  "source": "leaderboard",
15
  "job_id": 394,
16
- "job_start_time": "2024-04-07T20-38-06.931229",
17
- "error_msg": "CUDA error: invalid resource handle\nCUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.\nFor debugging consider passing CUDA_LAUNCH_BLOCKING=1.\nCompile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.\n",
18
- "traceback": "Traceback (most recent call last):\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 190, in wait_download_and_run_request\n run_request(\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 64, in run_request\n results = run_eval_on_model(\n ^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/run_eval.py\", line 55, in run_eval_on_model\n result = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/lm_eval_util.py\", line 145, in evaluate\n results = evaluator.simple_evaluate(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 159, in simple_evaluate\n results = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 343, in evaluate\n resps = getattr(lm, reqtype)(cloned_reqs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 1426, in generate_until\n batch_size, _ = self._detect_batch_size_and_length()\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 815, in _detect_batch_size_and_length\n batch_size, max_length = forward_batch()\n ^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 144, in decorator\n return function(batch_size, max_length, *args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 806, in forward_batch\n test_batch = torch.ones(\n ^^^^^^^^^^^\nRuntimeError: CUDA error: invalid resource handle\nCUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.\nFor debugging consider passing CUDA_LAUNCH_BLOCKING=1.\nCompile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.\n\n"
19
  }
 
8
  "architectures": "Qwen2ForCausalLM",
9
  "weight_type": "Original",
10
  "main_language": "Portuguese",
11
+ "status": "RERUN",
12
  "submitted_time": "2024-04-06T22:02:03Z",
13
  "model_type": "πŸ”Ά : fine-tuned/fp on domain-specific datasets",
14
  "source": "leaderboard",
15
  "job_id": 394,
16
+ "job_start_time": "2024-04-07T20-38-06.931229"
 
 
17
  }
databricks/dbrx-base_eval_request_False_bfloat16_Original.json CHANGED
@@ -8,12 +8,10 @@
8
  "architectures": "DbrxForCausalLM",
9
  "weight_type": "Original",
10
  "main_language": "English",
11
- "status": "FAILED",
12
  "submitted_time": "2024-04-07T15:38:13Z",
13
  "model_type": "🟒 : pretrained",
14
  "source": "leaderboard",
15
  "job_id": 393,
16
- "job_start_time": "2024-04-07T18-28-58.240299",
17
- "error_msg": "CUDA error: out of memory\nCUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.\nFor debugging consider passing CUDA_LAUNCH_BLOCKING=1.\nCompile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.\n",
18
- "traceback": "Traceback (most recent call last):\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 190, in wait_download_and_run_request\n run_request(\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 64, in run_request\n results = run_eval_on_model(\n ^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/run_eval.py\", line 55, in run_eval_on_model\n result = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/lm_eval_util.py\", line 145, in evaluate\n results = evaluator.simple_evaluate(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 159, in simple_evaluate\n results = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 343, in evaluate\n resps = getattr(lm, reqtype)(cloned_reqs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 1426, in generate_until\n batch_size, _ = self._detect_batch_size_and_length()\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 815, in _detect_batch_size_and_length\n batch_size, max_length = forward_batch()\n ^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 144, in decorator\n return function(batch_size, max_length, *args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 806, in forward_batch\n test_batch = torch.ones(\n ^^^^^^^^^^^\nRuntimeError: CUDA error: out of memory\nCUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.\nFor debugging consider passing CUDA_LAUNCH_BLOCKING=1.\nCompile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.\n\n"
19
  }
 
8
  "architectures": "DbrxForCausalLM",
9
  "weight_type": "Original",
10
  "main_language": "English",
11
+ "status": "RERUN",
12
  "submitted_time": "2024-04-07T15:38:13Z",
13
  "model_type": "🟒 : pretrained",
14
  "source": "leaderboard",
15
  "job_id": 393,
16
+ "job_start_time": "2024-04-07T18-28-58.240299"
 
 
17
  }
databricks/dbrx-instruct_eval_request_False_bfloat16_Original.json CHANGED
@@ -8,12 +8,10 @@
8
  "architectures": "DbrxForCausalLM",
9
  "weight_type": "Original",
10
  "main_language": "English",
11
- "status": "FAILED",
12
  "submitted_time": "2024-04-07T15:37:47Z",
13
  "model_type": "πŸ’¬ : chat models (RLHF, DPO, IFT, ...)",
14
  "source": "leaderboard",
15
  "job_id": 398,
16
- "job_start_time": "2024-04-07T22-29-01.634847",
17
- "error_msg": "CUDA error: invalid resource handle\nCUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.\nFor debugging consider passing CUDA_LAUNCH_BLOCKING=1.\nCompile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.\n",
18
- "traceback": "Traceback (most recent call last):\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 190, in wait_download_and_run_request\n run_request(\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 64, in run_request\n results = run_eval_on_model(\n ^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/run_eval.py\", line 55, in run_eval_on_model\n result = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/lm_eval_util.py\", line 145, in evaluate\n results = evaluator.simple_evaluate(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 159, in simple_evaluate\n results = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 343, in evaluate\n resps = getattr(lm, reqtype)(cloned_reqs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 1426, in generate_until\n batch_size, _ = self._detect_batch_size_and_length()\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 815, in _detect_batch_size_and_length\n batch_size, max_length = forward_batch()\n ^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 144, in decorator\n return function(batch_size, max_length, *args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 806, in forward_batch\n test_batch = torch.ones(\n ^^^^^^^^^^^\nRuntimeError: CUDA error: invalid resource handle\nCUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.\nFor debugging consider passing CUDA_LAUNCH_BLOCKING=1.\nCompile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.\n\n"
19
  }
 
8
  "architectures": "DbrxForCausalLM",
9
  "weight_type": "Original",
10
  "main_language": "English",
11
+ "status": "RERUN",
12
  "submitted_time": "2024-04-07T15:37:47Z",
13
  "model_type": "πŸ’¬ : chat models (RLHF, DPO, IFT, ...)",
14
  "source": "leaderboard",
15
  "job_id": 398,
16
+ "job_start_time": "2024-04-07T22-29-01.634847"
 
 
17
  }
deepseek-ai/deepseek-llm-67b-base_eval_request_False_bfloat16_Original.json CHANGED
@@ -7,13 +7,11 @@
7
  "params": 67.0,
8
  "architectures": "LlamaForCausalLM",
9
  "weight_type": "Original",
10
- "status": "FAILED",
11
  "submitted_time": "2024-02-05T23:10:09Z",
12
  "model_type": "🟒 : pretrained",
13
  "source": "script",
14
  "job_id": 340,
15
  "job_start_time": "2024-04-02T06-11-15.986508",
16
- "error_msg": "CUDA out of memory. Tried to allocate 344.00 MiB. GPU 0 has a total capacty of 79.35 GiB of which 36.19 MiB is free. Process 4070277 has 23.85 GiB memory in use. Process 4074833 has 27.00 GiB memory in use. Process 188848 has 11.95 GiB memory in use. Process 209361 has 16.51 GiB memory in use. Of the allocated memory 11.54 GiB is allocated by PyTorch, and 1.78 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF",
17
- "traceback": "Traceback (most recent call last):\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 238, in wait_download_and_run_request\n run_request(\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 64, in run_request\n results = run_eval_on_model(\n ^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/run_eval.py\", line 55, in run_eval_on_model\n result = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/lm_eval_util.py\", line 145, in evaluate\n results = evaluator.simple_evaluate(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 100, in simple_evaluate\n lm = lm_eval.api.registry.get_model(model).create_from_arg_string(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/api/model.py\", line 134, in create_from_arg_string\n return cls(**args, **args2)\n ^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 297, in __init__\n self._create_model(\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 608, in _create_model\n self._model = self.AUTO_MODEL_CLASS.from_pretrained(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/models/auto/auto_factory.py\", line 561, in from_pretrained\n return model_class.from_pretrained(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/modeling_utils.py\", line 3502, in from_pretrained\n ) = cls._load_pretrained_model(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/modeling_utils.py\", line 3926, in _load_pretrained_model\n new_error_msgs, offload_index, state_dict_index = _load_state_dict_into_meta_model(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/modeling_utils.py\", line 805, in _load_state_dict_into_meta_model\n set_module_tensor_to_device(model, param_name, param_device, **set_module_kwargs)\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/accelerate/utils/modeling.py\", line 347, in set_module_tensor_to_device\n new_value = value.to(device)\n ^^^^^^^^^^^^^^^^\ntorch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 344.00 MiB. GPU 0 has a total capacty of 79.35 GiB of which 36.19 MiB is free. Process 4070277 has 23.85 GiB memory in use. Process 4074833 has 27.00 GiB memory in use. Process 188848 has 11.95 GiB memory in use. Process 209361 has 16.51 GiB memory in use. Of the allocated memory 11.54 GiB is allocated by PyTorch, and 1.78 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF\n",
18
  "main_language": "?"
19
  }
 
7
  "params": 67.0,
8
  "architectures": "LlamaForCausalLM",
9
  "weight_type": "Original",
10
+ "status": "RERUN",
11
  "submitted_time": "2024-02-05T23:10:09Z",
12
  "model_type": "🟒 : pretrained",
13
  "source": "script",
14
  "job_id": 340,
15
  "job_start_time": "2024-04-02T06-11-15.986508",
 
 
16
  "main_language": "?"
17
  }
deepseek-ai/deepseek-moe-16b-base_eval_request_False_bfloat16_Original.json CHANGED
@@ -7,13 +7,11 @@
7
  "params": 16.376,
8
  "architectures": "DeepseekForCausalLM",
9
  "weight_type": "Original",
10
- "status": "FAILED",
11
  "submitted_time": "2024-02-05T23:08:52Z",
12
  "model_type": "🟒 : pretrained",
13
  "source": "script",
14
  "job_id": 348,
15
  "job_start_time": "2024-04-02T09-25-05.375938",
16
- "error_msg": "CUDA out of memory. Tried to allocate 20.00 MiB. GPU 0 has a total capacty of 79.35 GiB of which 10.19 MiB is free. Process 4070277 has 538.00 MiB memory in use. Process 4074833 has 27.62 GiB memory in use. Process 188848 has 32.47 GiB memory in use. Process 209361 has 18.72 GiB memory in use. Of the allocated memory 22.56 GiB is allocated by PyTorch, and 4.55 GiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF",
17
- "traceback": "Traceback (most recent call last):\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 238, in wait_download_and_run_request\n run_request(\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 64, in run_request\n results = run_eval_on_model(\n ^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/run_eval.py\", line 55, in run_eval_on_model\n result = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/lm_eval_util.py\", line 145, in evaluate\n results = evaluator.simple_evaluate(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 100, in simple_evaluate\n lm = lm_eval.api.registry.get_model(model).create_from_arg_string(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/api/model.py\", line 134, in create_from_arg_string\n return cls(**args, **args2)\n ^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 297, in __init__\n self._create_model(\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 608, in _create_model\n self._model = self.AUTO_MODEL_CLASS.from_pretrained(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/models/auto/auto_factory.py\", line 556, in from_pretrained\n return model_class.from_pretrained(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/modeling_utils.py\", line 3502, in from_pretrained\n ) = cls._load_pretrained_model(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/modeling_utils.py\", line 3926, in _load_pretrained_model\n new_error_msgs, offload_index, state_dict_index = _load_state_dict_into_meta_model(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/modeling_utils.py\", line 805, in _load_state_dict_into_meta_model\n set_module_tensor_to_device(model, param_name, param_device, **set_module_kwargs)\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/accelerate/utils/modeling.py\", line 347, in set_module_tensor_to_device\n new_value = value.to(device)\n ^^^^^^^^^^^^^^^^\ntorch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU 0 has a total capacty of 79.35 GiB of which 10.19 MiB is free. Process 4070277 has 538.00 MiB memory in use. Process 4074833 has 27.62 GiB memory in use. Process 188848 has 32.47 GiB memory in use. Process 209361 has 18.72 GiB memory in use. Of the allocated memory 22.56 GiB is allocated by PyTorch, and 4.55 GiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF\n",
18
  "main_language": "?"
19
  }
 
7
  "params": 16.376,
8
  "architectures": "DeepseekForCausalLM",
9
  "weight_type": "Original",
10
+ "status": "RERUN",
11
  "submitted_time": "2024-02-05T23:08:52Z",
12
  "model_type": "🟒 : pretrained",
13
  "source": "script",
14
  "job_id": 348,
15
  "job_start_time": "2024-04-02T09-25-05.375938",
 
 
16
  "main_language": "?"
17
  }
lmsys/vicuna-33b-v1.3_eval_request_False_float16_Original.json CHANGED
@@ -7,13 +7,11 @@
7
  "params": 33.0,
8
  "architectures": "LlamaForCausalLM",
9
  "weight_type": "Original",
10
- "status": "FAILED",
11
  "submitted_time": "2024-03-05T16:46:42Z",
12
  "model_type": "πŸ’¬ : chat models (RLHF, DPO, IFT, ...)",
13
  "source": "leaderboard",
14
  "job_id": 406,
15
  "job_start_time": "2024-04-08T00-04-56.313199",
16
- "main_language": "English",
17
- "error_msg": "CUDA out of memory. Tried to allocate 228.00 MiB. GPU 1 has a total capacty of 79.35 GiB of which 218.19 MiB is free. Process 2345755 has 7.21 GiB memory in use. Process 2497257 has 71.92 GiB memory in use. Of the allocated memory 6.76 GiB is allocated by PyTorch, and 43.85 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF",
18
- "traceback": "Traceback (most recent call last):\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 190, in wait_download_and_run_request\n run_request(\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 64, in run_request\n results = run_eval_on_model(\n ^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/run_eval.py\", line 55, in run_eval_on_model\n result = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/lm_eval_util.py\", line 145, in evaluate\n results = evaluator.simple_evaluate(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 415, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 100, in simple_evaluate\n lm = lm_eval.api.registry.get_model(model).create_from_arg_string(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/api/model.py\", line 134, in create_from_arg_string\n return cls(**args, **args2)\n ^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 297, in __init__\n self._create_model(\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 608, in _create_model\n self._model = self.AUTO_MODEL_CLASS.from_pretrained(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/models/auto/auto_factory.py\", line 563, in from_pretrained\n return model_class.from_pretrained(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/modeling_utils.py\", line 3531, in from_pretrained\n ) = cls._load_pretrained_model(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/modeling_utils.py\", line 3958, in _load_pretrained_model\n new_error_msgs, offload_index, state_dict_index = _load_state_dict_into_meta_model(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/transformers/modeling_utils.py\", line 812, in _load_state_dict_into_meta_model\n set_module_tensor_to_device(model, param_name, param_device, **set_module_kwargs)\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/accelerate/utils/modeling.py\", line 347, in set_module_tensor_to_device\n new_value = value.to(device)\n ^^^^^^^^^^^^^^^^\ntorch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 228.00 MiB. GPU 1 has a total capacty of 79.35 GiB of which 218.19 MiB is free. Process 2345755 has 7.21 GiB memory in use. Process 2497257 has 71.92 GiB memory in use. Of the allocated memory 6.76 GiB is allocated by PyTorch, and 43.85 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF\n"
19
  }
 
7
  "params": 33.0,
8
  "architectures": "LlamaForCausalLM",
9
  "weight_type": "Original",
10
+ "status": "RERUN",
11
  "submitted_time": "2024-03-05T16:46:42Z",
12
  "model_type": "πŸ’¬ : chat models (RLHF, DPO, IFT, ...)",
13
  "source": "leaderboard",
14
  "job_id": 406,
15
  "job_start_time": "2024-04-08T00-04-56.313199",
16
+ "main_language": "English"
 
 
17
  }