|
{ |
|
"results": { |
|
"assin2_rte": { |
|
"f1_macro,all": 0.7470003950561543, |
|
"acc,all": 0.7606209150326797, |
|
"alias": "assin2_rte" |
|
}, |
|
"assin2_sts": { |
|
"pearson,all": 0.5145659724171266, |
|
"mse,all": 1.6238355441176466, |
|
"alias": "assin2_sts" |
|
}, |
|
"bluex": { |
|
"acc,all": 0.41168289290681503, |
|
"acc,exam_id__USP_2019": 0.525, |
|
"acc,exam_id__UNICAMP_2018": 0.3148148148148148, |
|
"acc,exam_id__UNICAMP_2020": 0.4, |
|
"acc,exam_id__UNICAMP_2023": 0.4186046511627907, |
|
"acc,exam_id__UNICAMP_2024": 0.4444444444444444, |
|
"acc,exam_id__UNICAMP_2019": 0.44, |
|
"acc,exam_id__UNICAMP_2021_2": 0.4117647058823529, |
|
"acc,exam_id__USP_2022": 0.3877551020408163, |
|
"acc,exam_id__USP_2020": 0.35714285714285715, |
|
"acc,exam_id__USP_2018": 0.3333333333333333, |
|
"acc,exam_id__USP_2021": 0.36538461538461536, |
|
"acc,exam_id__USP_2023": 0.4318181818181818, |
|
"acc,exam_id__USP_2024": 0.4634146341463415, |
|
"acc,exam_id__UNICAMP_2021_1": 0.45652173913043476, |
|
"acc,exam_id__UNICAMP_2022": 0.5128205128205128, |
|
"alias": "bluex" |
|
}, |
|
"enem_challenge": { |
|
"alias": "enem", |
|
"acc,all": 0.529741077676697, |
|
"acc,exam_id__2016_2": 0.5853658536585366, |
|
"acc,exam_id__2016": 0.5454545454545454, |
|
"acc,exam_id__2010": 0.5213675213675214, |
|
"acc,exam_id__2014": 0.5688073394495413, |
|
"acc,exam_id__2023": 0.562962962962963, |
|
"acc,exam_id__2017": 0.5344827586206896, |
|
"acc,exam_id__2015": 0.47058823529411764, |
|
"acc,exam_id__2012": 0.5, |
|
"acc,exam_id__2022": 0.5037593984962406, |
|
"acc,exam_id__2013": 0.5092592592592593, |
|
"acc,exam_id__2009": 0.4608695652173913, |
|
"acc,exam_id__2011": 0.5897435897435898 |
|
}, |
|
"faquad_nli": { |
|
"f1_macro,all": 0.7851487912814374, |
|
"acc,all": 0.8415384615384616, |
|
"alias": "faquad_nli" |
|
}, |
|
"oab_exams": { |
|
"acc,all": 0.3990888382687927, |
|
"acc,exam_id__2014-13": 0.325, |
|
"acc,exam_id__2012-07": 0.35, |
|
"acc,exam_id__2012-09": 0.38961038961038963, |
|
"acc,exam_id__2011-03": 0.30303030303030304, |
|
"acc,exam_id__2012-08": 0.3625, |
|
"acc,exam_id__2015-17": 0.41025641025641024, |
|
"acc,exam_id__2014-15": 0.44871794871794873, |
|
"acc,exam_id__2017-24": 0.475, |
|
"acc,exam_id__2015-16": 0.425, |
|
"acc,exam_id__2017-23": 0.375, |
|
"acc,exam_id__2011-04": 0.3625, |
|
"acc,exam_id__2010-02": 0.4, |
|
"acc,exam_id__2016-19": 0.3974358974358974, |
|
"acc,exam_id__2012-06": 0.475, |
|
"acc,exam_id__2012-06a": 0.45, |
|
"acc,exam_id__2013-12": 0.425, |
|
"acc,exam_id__2017-22": 0.475, |
|
"acc,exam_id__2010-01": 0.32941176470588235, |
|
"acc,exam_id__2013-10": 0.3375, |
|
"acc,exam_id__2014-14": 0.4375, |
|
"acc,exam_id__2018-25": 0.45, |
|
"acc,exam_id__2016-20a": 0.325, |
|
"acc,exam_id__2015-18": 0.425, |
|
"acc,exam_id__2011-05": 0.35, |
|
"acc,exam_id__2013-11": 0.45, |
|
"acc,exam_id__2016-20": 0.4375, |
|
"acc,exam_id__2016-21": 0.4125, |
|
"alias": "oab_exams" |
|
}, |
|
"sparrow_emotion-2021-cortiz-por": { |
|
"alias": "emotion-2021-cortiz-por", |
|
"f1_macro,all": 0.049837533542238396, |
|
"acc,all": 0.09 |
|
}, |
|
"sparrow_hate-2019-fortuna-por": { |
|
"alias": "hate-2019-fortuna-por", |
|
"f1_macro,all": 0.49008288470928546, |
|
"acc,all": 0.67 |
|
}, |
|
"sparrow_sentiment-2016-mozetic-por": { |
|
"alias": "sentiment-2016-mozetic-por", |
|
"f1_macro,all": 0.4507701117730127, |
|
"acc,all": 0.468 |
|
}, |
|
"sparrow_sentiment-2018-brum-por": { |
|
"alias": "sentiment-2018-brum-por", |
|
"f1_macro,all": 0.4222291107853638, |
|
"acc,all": 0.426 |
|
} |
|
}, |
|
"configs": { |
|
"assin2_rte": { |
|
"task": "assin2_rte", |
|
"group": [ |
|
"pt_benchmark", |
|
"assin2" |
|
], |
|
"dataset_path": "assin2", |
|
"test_split": "test", |
|
"fewshot_split": "train", |
|
"doc_to_text": "Premissa: {{premise}}\nHipótese: {{hypothesis}}\nPergunta: A hipótese pode ser inferida pela premissa?\nResposta:", |
|
"doc_to_target": "{{['Não', 'Sim'][entailment_judgment]}}", |
|
"description": "Abaixo contém pares de premissa e hipótese, para cada par você deve julgar se a hipótese pode ser inferida a partir da premissa, responda apenas com Sim ou Não.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "id_sampler", |
|
"sampler_config": { |
|
"id_list": [ |
|
1, |
|
3251, |
|
2, |
|
3252, |
|
3, |
|
4, |
|
5, |
|
6, |
|
3253, |
|
7, |
|
3254, |
|
3255, |
|
3256, |
|
8, |
|
9, |
|
10, |
|
3257, |
|
11, |
|
3258, |
|
12, |
|
13, |
|
14, |
|
15, |
|
3259, |
|
3260, |
|
3261, |
|
3262, |
|
3263, |
|
16, |
|
17, |
|
3264, |
|
18, |
|
3265, |
|
3266, |
|
3267, |
|
19, |
|
20, |
|
3268, |
|
3269, |
|
21, |
|
3270, |
|
3271, |
|
22, |
|
3272, |
|
3273, |
|
23, |
|
3274, |
|
24, |
|
25, |
|
3275 |
|
], |
|
"id_column": "sentence_pair_id" |
|
} |
|
}, |
|
"num_fewshot": 15, |
|
"metric_list": [ |
|
{ |
|
"metric": "f1_macro", |
|
"aggregation": "f1_macro", |
|
"higher_is_better": true |
|
}, |
|
{ |
|
"metric": "acc", |
|
"aggregation": "acc", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "generate_until", |
|
"generation_kwargs": { |
|
"max_gen_toks": 32, |
|
"do_sample": false, |
|
"temperature": 0.0, |
|
"top_k": null, |
|
"top_p": null, |
|
"until": [ |
|
"\n\n" |
|
] |
|
}, |
|
"repeats": 1, |
|
"filter_list": [ |
|
{ |
|
"name": "all", |
|
"filter": [ |
|
{ |
|
"function": "find_similar_label", |
|
"labels": [ |
|
"Sim", |
|
"Não" |
|
] |
|
}, |
|
{ |
|
"function": "take_first" |
|
} |
|
] |
|
} |
|
], |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"assin2_sts": { |
|
"task": "assin2_sts", |
|
"group": [ |
|
"pt_benchmark", |
|
"assin2" |
|
], |
|
"dataset_path": "assin2", |
|
"test_split": "test", |
|
"fewshot_split": "train", |
|
"doc_to_text": "Frase 1: {{premise}}\nFrase 2: {{hypothesis}}\nPergunta: Qual o grau de similaridade entre as duas frases de 1,0 a 5,0?\nResposta:", |
|
"doc_to_target": "<function assin2_float_to_pt_str at 0x7f8bf0f71800>", |
|
"description": "Abaixo contém pares de frases, para cada par você deve julgar o grau de similaridade de 1,0 a 5,0, responda apenas com o número.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "id_sampler", |
|
"sampler_config": { |
|
"id_list": [ |
|
1, |
|
3251, |
|
2, |
|
3252, |
|
3, |
|
4, |
|
5, |
|
6, |
|
3253, |
|
7, |
|
3254, |
|
3255, |
|
3256, |
|
8, |
|
9, |
|
10, |
|
3257, |
|
11, |
|
3258, |
|
12, |
|
13, |
|
14, |
|
15, |
|
3259, |
|
3260, |
|
3261, |
|
3262, |
|
3263, |
|
16, |
|
17, |
|
3264, |
|
18, |
|
3265, |
|
3266, |
|
3267, |
|
19, |
|
20, |
|
3268, |
|
3269, |
|
21, |
|
3270, |
|
3271, |
|
22, |
|
3272, |
|
3273, |
|
23, |
|
3274, |
|
24, |
|
25, |
|
3275 |
|
], |
|
"id_column": "sentence_pair_id" |
|
} |
|
}, |
|
"num_fewshot": 15, |
|
"metric_list": [ |
|
{ |
|
"metric": "pearson", |
|
"aggregation": "pearsonr", |
|
"higher_is_better": true |
|
}, |
|
{ |
|
"metric": "mse", |
|
"aggregation": "mean_squared_error", |
|
"higher_is_better": false |
|
} |
|
], |
|
"output_type": "generate_until", |
|
"generation_kwargs": { |
|
"max_gen_toks": 32, |
|
"do_sample": false, |
|
"temperature": 0.0, |
|
"top_k": null, |
|
"top_p": null, |
|
"until": [ |
|
"\n\n" |
|
] |
|
}, |
|
"repeats": 1, |
|
"filter_list": [ |
|
{ |
|
"name": "all", |
|
"filter": [ |
|
{ |
|
"function": "number_filter", |
|
"type": "float", |
|
"range_min": 1.0, |
|
"range_max": 5.0, |
|
"on_outside_range": "clip", |
|
"fallback": 5.0 |
|
}, |
|
{ |
|
"function": "take_first" |
|
} |
|
] |
|
} |
|
], |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"bluex": { |
|
"task": "bluex", |
|
"group": [ |
|
"pt_benchmark", |
|
"vestibular" |
|
], |
|
"dataset_path": "eduagarcia-temp/BLUEX_without_images", |
|
"test_split": "train", |
|
"fewshot_split": "train", |
|
"doc_to_text": "<function enem_doc_to_text at 0x7f8bf0f711c0>", |
|
"doc_to_target": "{{answerKey}}", |
|
"description": "As perguntas a seguir são questões de multipla escolha de provas de vestibular de Universidades Brasileiras, reponda apenas com as letras A, B, C, D ou E.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "id_sampler", |
|
"sampler_config": { |
|
"id_list": [ |
|
"USP_2018_3", |
|
"UNICAMP_2018_2", |
|
"USP_2018_35", |
|
"UNICAMP_2018_16", |
|
"USP_2018_89" |
|
], |
|
"id_column": "id", |
|
"exclude_from_task": true |
|
} |
|
}, |
|
"num_fewshot": 3, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "acc", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "generate_until", |
|
"generation_kwargs": { |
|
"max_gen_toks": 32, |
|
"do_sample": false, |
|
"temperature": 0.0, |
|
"top_k": null, |
|
"top_p": null, |
|
"until": [ |
|
"\n\n" |
|
] |
|
}, |
|
"repeats": 1, |
|
"filter_list": [ |
|
{ |
|
"name": "all", |
|
"filter": [ |
|
{ |
|
"function": "normalize_spaces" |
|
}, |
|
{ |
|
"function": "remove_accents" |
|
}, |
|
{ |
|
"function": "find_choices", |
|
"choices": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D", |
|
"E" |
|
], |
|
"regex_patterns": [ |
|
"(?:[Ll]etra|[Aa]lternativa|[Rr]esposta|[Rr]esposta [Cc]orreta|[Rr]esposta[Cc]orreta e|[Oo]pcao):? ([ABCDE])\\b", |
|
"\\b([ABCDE])\\.", |
|
"\\b([ABCDE]) ?[.):-]", |
|
"\\b([ABCDE])$", |
|
"\\b([ABCDE])\\b" |
|
] |
|
}, |
|
{ |
|
"function": "take_first" |
|
} |
|
], |
|
"group_by": { |
|
"column": "exam_id" |
|
} |
|
} |
|
], |
|
"should_decontaminate": true, |
|
"doc_to_decontamination_query": "<function enem_doc_to_text at 0x7f8bf0f71440>", |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"enem_challenge": { |
|
"task": "enem_challenge", |
|
"task_alias": "enem", |
|
"group": [ |
|
"pt_benchmark", |
|
"vestibular" |
|
], |
|
"dataset_path": "eduagarcia/enem_challenge", |
|
"test_split": "train", |
|
"fewshot_split": "train", |
|
"doc_to_text": "<function enem_doc_to_text at 0x7f8bf0f719e0>", |
|
"doc_to_target": "{{answerKey}}", |
|
"description": "As perguntas a seguir são questões de multipla escolha do Exame Nacional do Ensino Médio (ENEM), reponda apenas com as letras A, B, C, D ou E.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "id_sampler", |
|
"sampler_config": { |
|
"id_list": [ |
|
"2022_21", |
|
"2022_88", |
|
"2022_143" |
|
], |
|
"id_column": "id", |
|
"exclude_from_task": true |
|
} |
|
}, |
|
"num_fewshot": 3, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "acc", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "generate_until", |
|
"generation_kwargs": { |
|
"max_gen_toks": 32, |
|
"do_sample": false, |
|
"temperature": 0.0, |
|
"top_k": null, |
|
"top_p": null, |
|
"until": [ |
|
"\n\n" |
|
] |
|
}, |
|
"repeats": 1, |
|
"filter_list": [ |
|
{ |
|
"name": "all", |
|
"filter": [ |
|
{ |
|
"function": "normalize_spaces" |
|
}, |
|
{ |
|
"function": "remove_accents" |
|
}, |
|
{ |
|
"function": "find_choices", |
|
"choices": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D", |
|
"E" |
|
], |
|
"regex_patterns": [ |
|
"(?:[Ll]etra|[Aa]lternativa|[Rr]esposta|[Rr]esposta [Cc]orreta|[Rr]esposta[Cc]orreta e|[Oo]pcao):? ([ABCDE])\\b", |
|
"\\b([ABCDE])\\.", |
|
"\\b([ABCDE]) ?[.):-]", |
|
"\\b([ABCDE])$", |
|
"\\b([ABCDE])\\b" |
|
] |
|
}, |
|
{ |
|
"function": "take_first" |
|
} |
|
], |
|
"group_by": { |
|
"column": "exam_id" |
|
} |
|
} |
|
], |
|
"should_decontaminate": true, |
|
"doc_to_decontamination_query": "<function enem_doc_to_text at 0x7f8bf0f71c60>", |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"faquad_nli": { |
|
"task": "faquad_nli", |
|
"group": [ |
|
"pt_benchmark" |
|
], |
|
"dataset_path": "ruanchaves/faquad-nli", |
|
"test_split": "test", |
|
"fewshot_split": "train", |
|
"doc_to_text": "Pergunta: {{question}}\nResposta: {{answer}}\nA resposta satisfaz a pergunta? Sim ou Não?", |
|
"doc_to_target": "{{['Não', 'Sim'][label]}}", |
|
"description": "Abaixo contém pares de pergunta e reposta, para cada par você deve julgar resposta responde a pergunta de maneira satisfatória e aparenta estar correta, escreva apenas Sim ou Não.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n", |
|
"sampler_config": { |
|
"fewshot_indices": [ |
|
1893, |
|
949, |
|
663, |
|
105, |
|
1169, |
|
2910, |
|
2227, |
|
2813, |
|
974, |
|
558, |
|
1503, |
|
1958, |
|
2918, |
|
601, |
|
1560, |
|
984, |
|
2388, |
|
995, |
|
2233, |
|
1982, |
|
165, |
|
2788, |
|
1312, |
|
2285, |
|
522, |
|
1113, |
|
1670, |
|
323, |
|
236, |
|
1263, |
|
1562, |
|
2519, |
|
1049, |
|
432, |
|
1167, |
|
1394, |
|
2022, |
|
2551, |
|
2194, |
|
2187, |
|
2282, |
|
2816, |
|
108, |
|
301, |
|
1185, |
|
1315, |
|
1420, |
|
2436, |
|
2322, |
|
766 |
|
] |
|
} |
|
}, |
|
"num_fewshot": 15, |
|
"metric_list": [ |
|
{ |
|
"metric": "f1_macro", |
|
"aggregation": "f1_macro", |
|
"higher_is_better": true |
|
}, |
|
{ |
|
"metric": "acc", |
|
"aggregation": "acc", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "generate_until", |
|
"generation_kwargs": { |
|
"max_gen_toks": 32, |
|
"do_sample": false, |
|
"temperature": 0.0, |
|
"top_k": null, |
|
"top_p": null, |
|
"until": [ |
|
"\n\n" |
|
] |
|
}, |
|
"repeats": 1, |
|
"filter_list": [ |
|
{ |
|
"name": "all", |
|
"filter": [ |
|
{ |
|
"function": "find_similar_label", |
|
"labels": [ |
|
"Sim", |
|
"Não" |
|
] |
|
}, |
|
{ |
|
"function": "take_first" |
|
} |
|
] |
|
} |
|
], |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"oab_exams": { |
|
"task": "oab_exams", |
|
"group": [ |
|
"legal_benchmark", |
|
"pt_benchmark" |
|
], |
|
"dataset_path": "eduagarcia/oab_exams", |
|
"test_split": "train", |
|
"fewshot_split": "train", |
|
"doc_to_text": "<function doc_to_text at 0x7f8bf0f70b80>", |
|
"doc_to_target": "{{answerKey}}", |
|
"description": "As perguntas a seguir são questões de multipla escolha do Exame de Ordem da Ordem dos Advogados do Brasil (OAB), reponda apenas com as letras A, B, C ou D.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "id_sampler", |
|
"sampler_config": { |
|
"id_list": [ |
|
"2010-01_1", |
|
"2010-01_11", |
|
"2010-01_13", |
|
"2010-01_23", |
|
"2010-01_26", |
|
"2010-01_28", |
|
"2010-01_38", |
|
"2010-01_48", |
|
"2010-01_58", |
|
"2010-01_68", |
|
"2010-01_76", |
|
"2010-01_83", |
|
"2010-01_85", |
|
"2010-01_91", |
|
"2010-01_99" |
|
], |
|
"id_column": "id", |
|
"exclude_from_task": true |
|
} |
|
}, |
|
"num_fewshot": 3, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "acc", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "generate_until", |
|
"generation_kwargs": { |
|
"max_gen_toks": 32, |
|
"do_sample": false, |
|
"temperature": 0.0, |
|
"top_k": null, |
|
"top_p": null, |
|
"until": [ |
|
"\n\n" |
|
] |
|
}, |
|
"repeats": 1, |
|
"filter_list": [ |
|
{ |
|
"name": "all", |
|
"filter": [ |
|
{ |
|
"function": "normalize_spaces" |
|
}, |
|
{ |
|
"function": "remove_accents" |
|
}, |
|
{ |
|
"function": "find_choices", |
|
"choices": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"regex_patterns": [ |
|
"(?:[Ll]etra|[Aa]lternativa|[Rr]esposta|[Rr]esposta [Cc]orreta|[Rr]esposta[Cc]orreta e|[Oo]pcao):? ([ABCD])\\b", |
|
"\\b([ABCD])\\)", |
|
"\\b([ABCD]) ?[.):-]", |
|
"\\b([ABCD])$", |
|
"\\b([ABCD])\\b" |
|
] |
|
}, |
|
{ |
|
"function": "take_first" |
|
} |
|
], |
|
"group_by": { |
|
"column": "exam_id" |
|
} |
|
} |
|
], |
|
"should_decontaminate": true, |
|
"doc_to_decontamination_query": "<function doc_to_text at 0x7f8bf0f70e00>", |
|
"metadata": { |
|
"version": 1.4 |
|
} |
|
}, |
|
"sparrow_emotion-2021-cortiz-por": { |
|
"task": "sparrow_emotion-2021-cortiz-por", |
|
"task_alias": "emotion-2021-cortiz-por", |
|
"group": [ |
|
"pt_benchmark", |
|
"sparrow" |
|
], |
|
"dataset_path": "UBC-NLP/sparrow", |
|
"dataset_name": "emotion-2021-cortiz-por", |
|
"test_split": "validation", |
|
"fewshot_split": "train", |
|
"doc_to_text": "Texto: {{content}}\nPergunta: Qual a principal emoção apresentada no texto?\nResposta:", |
|
"doc_to_target": "<function sparrow_emotion_por_trans_label at 0x7f8bf0f71080>", |
|
"description": "Abaixo contém o conteúdo de tweets de usuarios do Twitter em português, sua tarefa é extrair qual a principal emoção dos textos. Responda com apenas uma das seguintes opções:\n Admiração, Diversão, Raiva, Aborrecimento, Aprovação, Compaixão, Confusão, Curiosidade, Desejo, Decepção, Desaprovação, Nojo, Vergonha, Inveja, Entusiasmo, Medo, Gratidão, Luto, Alegria, Saudade, Amor, Nervosismo, Otimismo, Orgulho, Alívio, Remorso, Tristeza ou Surpresa.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 25, |
|
"metric_list": [ |
|
{ |
|
"metric": "f1_macro", |
|
"aggregation": "f1_macro", |
|
"higher_is_better": true |
|
}, |
|
{ |
|
"metric": "acc", |
|
"aggregation": "acc", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "generate_until", |
|
"generation_kwargs": { |
|
"max_gen_toks": 32, |
|
"do_sample": false, |
|
"temperature": 0.0, |
|
"top_k": null, |
|
"top_p": null, |
|
"until": [ |
|
"\n\n" |
|
] |
|
}, |
|
"repeats": 1, |
|
"filter_list": [ |
|
{ |
|
"name": "all", |
|
"filter": [ |
|
{ |
|
"function": "find_similar_label", |
|
"labels": [ |
|
"Admiração", |
|
"Diversão", |
|
"Raiva", |
|
"Aborrecimento", |
|
"Aprovação", |
|
"Compaixão", |
|
"Confusão", |
|
"Curiosidade", |
|
"Desejo", |
|
"Decepção", |
|
"Desaprovação", |
|
"Nojo", |
|
" Vergonha", |
|
"Inveja", |
|
"Entusiasmo", |
|
"Medo", |
|
"Gratidão", |
|
"Luto", |
|
"Alegria", |
|
"Saudade", |
|
"Amor", |
|
"Nervosismo", |
|
"Otimismo", |
|
"Orgulho", |
|
"Alívio", |
|
"Remorso", |
|
"Tristeza", |
|
"Surpresa" |
|
] |
|
}, |
|
{ |
|
"function": "take_first" |
|
} |
|
] |
|
} |
|
], |
|
"should_decontaminate": false, |
|
"limit": 500, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"sparrow_hate-2019-fortuna-por": { |
|
"task": "sparrow_hate-2019-fortuna-por", |
|
"task_alias": "hate-2019-fortuna-por", |
|
"group": [ |
|
"pt_benchmark", |
|
"sparrow" |
|
], |
|
"dataset_path": "UBC-NLP/sparrow", |
|
"dataset_name": "hate-2019-fortuna-por", |
|
"test_split": "validation", |
|
"fewshot_split": "train", |
|
"doc_to_text": "Texto: {{content}}\nPergunta: O texto contém discurso de ódio?\nResposta:", |
|
"doc_to_target": "{{'Sim' if label == 'Hate' else 'Não'}}", |
|
"description": "Abaixo contém o conteúdo de tweets de usuarios do Twitter em português, sua tarefa é classificar se o texto contem discurso de ódio our não. Responda apenas com Sim ou Não.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 25, |
|
"metric_list": [ |
|
{ |
|
"metric": "f1_macro", |
|
"aggregation": "f1_macro", |
|
"higher_is_better": true |
|
}, |
|
{ |
|
"metric": "acc", |
|
"aggregation": "acc", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "generate_until", |
|
"generation_kwargs": { |
|
"max_gen_toks": 32, |
|
"do_sample": false, |
|
"temperature": 0.0, |
|
"top_k": null, |
|
"top_p": null, |
|
"until": [ |
|
"\n\n" |
|
] |
|
}, |
|
"repeats": 1, |
|
"filter_list": [ |
|
{ |
|
"name": "all", |
|
"filter": [ |
|
{ |
|
"function": "find_similar_label", |
|
"labels": [ |
|
"Sim", |
|
"Não" |
|
] |
|
}, |
|
{ |
|
"function": "take_first" |
|
} |
|
] |
|
} |
|
], |
|
"should_decontaminate": false, |
|
"limit": 500, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"sparrow_sentiment-2016-mozetic-por": { |
|
"task": "sparrow_sentiment-2016-mozetic-por", |
|
"task_alias": "sentiment-2016-mozetic-por", |
|
"group": [ |
|
"pt_benchmark", |
|
"sparrow" |
|
], |
|
"dataset_path": "UBC-NLP/sparrow", |
|
"dataset_name": "sentiment-2016-mozetic-por", |
|
"test_split": "validation", |
|
"fewshot_split": "train", |
|
"doc_to_text": "Texto: {{content}}\nPergunta: O sentimento do texto é Positivo, Neutro ou Negativo?\nResposta:", |
|
"doc_to_target": "{{'Positivo' if label == 'Positive' else ('Negativo' if label == 'Negative' else 'Neutro')}}", |
|
"description": "Abaixo contém o conteúdo de tweets de usuarios do Twitter em português, sua tarefa é classificar se o sentimento do texto é Positivo, Neutro ou Negativo. Responda apenas com uma das opções.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 25, |
|
"metric_list": [ |
|
{ |
|
"metric": "f1_macro", |
|
"aggregation": "f1_macro", |
|
"higher_is_better": true |
|
}, |
|
{ |
|
"metric": "acc", |
|
"aggregation": "acc", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "generate_until", |
|
"generation_kwargs": { |
|
"max_gen_toks": 32, |
|
"do_sample": false, |
|
"temperature": 0.0, |
|
"top_k": null, |
|
"top_p": null, |
|
"until": [ |
|
"\n\n" |
|
] |
|
}, |
|
"repeats": 1, |
|
"filter_list": [ |
|
{ |
|
"name": "all", |
|
"filter": [ |
|
{ |
|
"function": "find_similar_label", |
|
"labels": [ |
|
"Positivo", |
|
"Neutro", |
|
"Negativo" |
|
] |
|
}, |
|
{ |
|
"function": "take_first" |
|
} |
|
] |
|
} |
|
], |
|
"should_decontaminate": false, |
|
"limit": 500, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"sparrow_sentiment-2018-brum-por": { |
|
"task": "sparrow_sentiment-2018-brum-por", |
|
"task_alias": "sentiment-2018-brum-por", |
|
"group": [ |
|
"pt_benchmark", |
|
"sparrow" |
|
], |
|
"dataset_path": "UBC-NLP/sparrow", |
|
"dataset_name": "sentiment-2018-brum-por", |
|
"test_split": "validation", |
|
"fewshot_split": "train", |
|
"doc_to_text": "Texto: {{content}}\nPergunta: O sentimento do texto é Positivo, Neutro ou Negativo?\nResposta:", |
|
"doc_to_target": "{{'Positivo' if label == 'Positive' else ('Negativo' if label == 'Negative' else 'Neutro')}}", |
|
"description": "Abaixo contém o conteúdo de tweets de usuarios do Twitter em português, sua tarefa é classificar se o sentimento do texto é Positivo, Neutro ou Negativo. Responda apenas com uma das opções.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 25, |
|
"metric_list": [ |
|
{ |
|
"metric": "f1_macro", |
|
"aggregation": "f1_macro", |
|
"higher_is_better": true |
|
}, |
|
{ |
|
"metric": "acc", |
|
"aggregation": "acc", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "generate_until", |
|
"generation_kwargs": { |
|
"max_gen_toks": 32, |
|
"do_sample": false, |
|
"temperature": 0.0, |
|
"top_k": null, |
|
"top_p": null, |
|
"until": [ |
|
"\n\n" |
|
] |
|
}, |
|
"repeats": 1, |
|
"filter_list": [ |
|
{ |
|
"name": "all", |
|
"filter": [ |
|
{ |
|
"function": "find_similar_label", |
|
"labels": [ |
|
"Positivo", |
|
"Neutro", |
|
"Negativo" |
|
] |
|
}, |
|
{ |
|
"function": "take_first" |
|
} |
|
] |
|
} |
|
], |
|
"should_decontaminate": false, |
|
"limit": 500, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
} |
|
}, |
|
"versions": { |
|
"assin2_rte": 1.0, |
|
"assin2_sts": 1.0, |
|
"bluex": 1.0, |
|
"enem_challenge": 1.0, |
|
"faquad_nli": 1.0, |
|
"oab_exams": 1.4, |
|
"sparrow_emotion-2021-cortiz-por": 1.0, |
|
"sparrow_hate-2019-fortuna-por": 1.0, |
|
"sparrow_sentiment-2016-mozetic-por": 1.0, |
|
"sparrow_sentiment-2018-brum-por": 1.0 |
|
}, |
|
"n-shot": { |
|
"assin2_rte": 15, |
|
"assin2_sts": 15, |
|
"bluex": 3, |
|
"enem_challenge": 3, |
|
"faquad_nli": 15, |
|
"oab_exams": 3, |
|
"sparrow_emotion-2021-cortiz-por": 25, |
|
"sparrow_hate-2019-fortuna-por": 25, |
|
"sparrow_sentiment-2016-mozetic-por": 25, |
|
"sparrow_sentiment-2018-brum-por": 25 |
|
}, |
|
"model_meta": { |
|
"truncated": 0, |
|
"non_truncated": 11889, |
|
"padded": 0, |
|
"non_padded": 11889, |
|
"fewshots_truncated": 0, |
|
"has_chat_template": true, |
|
"chat_type": "system_user_assistant", |
|
"n_gpus": 1, |
|
"accelerate_num_process": null, |
|
"model_sha": "cdd1aef103a52ac458dee200ad0661c967dd0e63", |
|
"model_dtype": "torch.bfloat16", |
|
"model_memory_footprint": 14221328384, |
|
"model_num_parameters": 7043551232, |
|
"model_is_loaded_in_4bit": false, |
|
"model_is_loaded_in_8bit": false, |
|
"model_is_quantized": null, |
|
"model_device": "cuda:1", |
|
"batch_size": 16, |
|
"max_length": 4096, |
|
"max_ctx_length": 4064, |
|
"max_gen_toks": 32 |
|
}, |
|
"task_model_meta": { |
|
"assin2_rte": { |
|
"sample_size": 2448, |
|
"truncated": 0, |
|
"non_truncated": 2448, |
|
"padded": 0, |
|
"non_padded": 2448, |
|
"fewshots_truncated": 0, |
|
"mean_seq_length": 1375.7455065359477, |
|
"min_seq_length": 1352, |
|
"max_seq_length": 1442, |
|
"max_ctx_length": 4064, |
|
"max_gen_toks": 32, |
|
"mean_original_fewshots_size": 15.0, |
|
"mean_effective_fewshot_size": 15.0 |
|
}, |
|
"assin2_sts": { |
|
"sample_size": 2448, |
|
"truncated": 0, |
|
"non_truncated": 2448, |
|
"padded": 0, |
|
"non_padded": 2448, |
|
"fewshots_truncated": 0, |
|
"mean_seq_length": 1575.7455065359477, |
|
"min_seq_length": 1552, |
|
"max_seq_length": 1642, |
|
"max_ctx_length": 4064, |
|
"max_gen_toks": 32, |
|
"mean_original_fewshots_size": 15.0, |
|
"mean_effective_fewshot_size": 15.0 |
|
}, |
|
"bluex": { |
|
"sample_size": 719, |
|
"truncated": 0, |
|
"non_truncated": 719, |
|
"padded": 0, |
|
"non_padded": 719, |
|
"fewshots_truncated": 0, |
|
"mean_seq_length": 1429.9262865090404, |
|
"min_seq_length": 1053, |
|
"max_seq_length": 2230, |
|
"max_ctx_length": 4064, |
|
"max_gen_toks": 32, |
|
"mean_original_fewshots_size": 3.0, |
|
"mean_effective_fewshot_size": 3.0 |
|
}, |
|
"enem_challenge": { |
|
"sample_size": 1429, |
|
"truncated": 0, |
|
"non_truncated": 1429, |
|
"padded": 0, |
|
"non_padded": 1429, |
|
"fewshots_truncated": 0, |
|
"mean_seq_length": 1640.039188243527, |
|
"min_seq_length": 1374, |
|
"max_seq_length": 2638, |
|
"max_ctx_length": 4064, |
|
"max_gen_toks": 32, |
|
"mean_original_fewshots_size": 3.0, |
|
"mean_effective_fewshot_size": 3.0 |
|
}, |
|
"faquad_nli": { |
|
"sample_size": 650, |
|
"truncated": 0, |
|
"non_truncated": 650, |
|
"padded": 0, |
|
"non_padded": 650, |
|
"fewshots_truncated": 0, |
|
"mean_seq_length": 1686.9876923076922, |
|
"min_seq_length": 1631, |
|
"max_seq_length": 1807, |
|
"max_ctx_length": 4064, |
|
"max_gen_toks": 32, |
|
"mean_original_fewshots_size": 15.0, |
|
"mean_effective_fewshot_size": 15.0 |
|
}, |
|
"oab_exams": { |
|
"sample_size": 2195, |
|
"truncated": 0, |
|
"non_truncated": 2195, |
|
"padded": 0, |
|
"non_padded": 2195, |
|
"fewshots_truncated": 0, |
|
"mean_seq_length": 1386.764464692483, |
|
"min_seq_length": 1120, |
|
"max_seq_length": 1889, |
|
"max_ctx_length": 4064, |
|
"max_gen_toks": 32, |
|
"mean_original_fewshots_size": 3.0, |
|
"mean_effective_fewshot_size": 3.0 |
|
}, |
|
"sparrow_emotion-2021-cortiz-por": { |
|
"sample_size": 500, |
|
"truncated": 0, |
|
"non_truncated": 500, |
|
"padded": 0, |
|
"non_padded": 500, |
|
"fewshots_truncated": 0, |
|
"mean_seq_length": 1939.336, |
|
"min_seq_length": 1917, |
|
"max_seq_length": 1973, |
|
"max_ctx_length": 4064, |
|
"max_gen_toks": 32, |
|
"mean_original_fewshots_size": 25.0, |
|
"mean_effective_fewshot_size": 25.0 |
|
}, |
|
"sparrow_hate-2019-fortuna-por": { |
|
"sample_size": 500, |
|
"truncated": 0, |
|
"non_truncated": 500, |
|
"padded": 0, |
|
"non_padded": 500, |
|
"fewshots_truncated": 0, |
|
"mean_seq_length": 1957.15, |
|
"min_seq_length": 1933, |
|
"max_seq_length": 2002, |
|
"max_ctx_length": 4064, |
|
"max_gen_toks": 32, |
|
"mean_original_fewshots_size": 25.0, |
|
"mean_effective_fewshot_size": 25.0 |
|
}, |
|
"sparrow_sentiment-2016-mozetic-por": { |
|
"sample_size": 500, |
|
"truncated": 0, |
|
"non_truncated": 500, |
|
"padded": 0, |
|
"non_padded": 500, |
|
"fewshots_truncated": 0, |
|
"mean_seq_length": 1669.088, |
|
"min_seq_length": 1652, |
|
"max_seq_length": 1705, |
|
"max_ctx_length": 4064, |
|
"max_gen_toks": 32, |
|
"mean_original_fewshots_size": 25.0, |
|
"mean_effective_fewshot_size": 25.0 |
|
}, |
|
"sparrow_sentiment-2018-brum-por": { |
|
"sample_size": 500, |
|
"truncated": 0, |
|
"non_truncated": 500, |
|
"padded": 0, |
|
"non_padded": 500, |
|
"fewshots_truncated": 0, |
|
"mean_seq_length": 1834.55, |
|
"min_seq_length": 1817, |
|
"max_seq_length": 1867, |
|
"max_ctx_length": 4064, |
|
"max_gen_toks": 32, |
|
"mean_original_fewshots_size": 25.0, |
|
"mean_effective_fewshot_size": 25.0 |
|
} |
|
}, |
|
"config": { |
|
"model": "huggingface", |
|
"model_args": "pretrained=Deci/DeciLM-7B,dtype=bfloat16,device=cuda:1,revision=main,trust_remote_code=True,starting_max_length=4096", |
|
"batch_size": "auto", |
|
"batch_sizes": [], |
|
"device": null, |
|
"use_cache": null, |
|
"limit": [ |
|
null, |
|
null, |
|
null, |
|
null, |
|
null, |
|
null, |
|
500.0, |
|
500.0, |
|
500.0, |
|
500.0 |
|
], |
|
"bootstrap_iters": 0, |
|
"gen_kwargs": null |
|
}, |
|
"git_hash": "15f86b5" |
|
} |