eduagarcia
commited on
Commit
•
c8ee2c3
1
Parent(s):
f9fb911
Loading script
Browse files- BLUEX_without_images_disabled.py +115 -0
BLUEX_without_images_disabled.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""OAB Exams dataset"""
|
2 |
+
|
3 |
+
import datasets
|
4 |
+
import pandas as pd
|
5 |
+
import re
|
6 |
+
from collections import defaultdict
|
7 |
+
import os
|
8 |
+
import json
|
9 |
+
|
10 |
+
_CITATION = """@misc{almeida2023bluex,
|
11 |
+
title={BLUEX: A benchmark based on Brazilian Leading Universities Entrance eXams},
|
12 |
+
author={Thales Sales Almeida and Thiago Laitz and Giovana K. Bonás and Rodrigo Nogueira},
|
13 |
+
year={2023},
|
14 |
+
eprint={2307.05410},
|
15 |
+
archivePrefix={arXiv},
|
16 |
+
primaryClass={cs.CL}
|
17 |
+
}
|
18 |
+
"""
|
19 |
+
|
20 |
+
_DESCRIPTION = """
|
21 |
+
Despite Portuguese being the fifth most widely spoken language, there is a lack of freely available resources for evaluating language models in Portuguese. This repository contains a multimodal dataset consisting of the two leading university entrance exams conducted in Brazil: Convest (Unicamp) and Fuvest (USP), spanning from 2018 to 2024. The dataset comprises a total of 1260 questions, of which 724 do not have accompanying images.
|
22 |
+
"""
|
23 |
+
|
24 |
+
_HOMEPAGE="https://github.com/Portuguese-Benchmark-Datasets/BLUEX"
|
25 |
+
|
26 |
+
_URL = "portuguese-benchmark-datasets/BLUEX"
|
27 |
+
_URL = "https://raw.githubusercontent.com/Portuguese-Benchmark-Datasets/BLUEX/main/data/bluex_dataset.zip"
|
28 |
+
|
29 |
+
class BLUEX_without_images(datasets.GeneratorBasedBuilder):
|
30 |
+
|
31 |
+
VERSION = datasets.Version("1.1.0")
|
32 |
+
def _info(self):
|
33 |
+
return datasets.DatasetInfo(
|
34 |
+
description=_DESCRIPTION,
|
35 |
+
features=datasets.Features(
|
36 |
+
{
|
37 |
+
"id": datasets.Value("string"),
|
38 |
+
"question_number": datasets.Value("int32"),
|
39 |
+
"exam_id": datasets.Value("string"),
|
40 |
+
"exam_year": datasets.Value("string"),
|
41 |
+
"university": datasets.Value("string"),
|
42 |
+
"question_type": datasets.Sequence(datasets.Value("string")),
|
43 |
+
"nullified": datasets.Value("bool"),
|
44 |
+
"question": datasets.Value("string"),
|
45 |
+
"choices": datasets.Sequence(feature={
|
46 |
+
"text": datasets.Value("string"),
|
47 |
+
"label": datasets.Value("string")
|
48 |
+
}),
|
49 |
+
"answerKey": datasets.Value("string"),
|
50 |
+
}),
|
51 |
+
supervised_keys=None,
|
52 |
+
homepage=_HOMEPAGE,
|
53 |
+
citation=_CITATION,
|
54 |
+
)
|
55 |
+
|
56 |
+
def _split_generators(self, dl_manager):
|
57 |
+
#dataset = datasets.load_dataset(_URL, split="questions")
|
58 |
+
#remove questions that require images
|
59 |
+
#dataset = dataset.filter(lambda example: not example['IU'] and example['alternatives_type'] == 'string')
|
60 |
+
filedir = dl_manager.download_and_extract(_URL)
|
61 |
+
return [
|
62 |
+
datasets.SplitGenerator(
|
63 |
+
name=datasets.Split.TRAIN,
|
64 |
+
gen_kwargs={
|
65 |
+
"filedir": os.path.join(filedir, 'questions')
|
66 |
+
}
|
67 |
+
)
|
68 |
+
]
|
69 |
+
|
70 |
+
def _generate_examples(self, filedir):
|
71 |
+
|
72 |
+
for university in os.listdir(filedir):
|
73 |
+
years = sorted(os.listdir(os.path.join(filedir, university)))
|
74 |
+
for year in years:
|
75 |
+
days = [d for d in os.listdir(os.path.join(filedir, university, year)) if os.path.isdir(os.path.join(filedir, university, year, d))]
|
76 |
+
if len(days) == 0:
|
77 |
+
days = ['']
|
78 |
+
days = sorted(days)
|
79 |
+
for day in days:
|
80 |
+
if day == '':
|
81 |
+
path = os.path.join(filedir, university, year)
|
82 |
+
else:
|
83 |
+
path = os.path.join(filedir, university, year, day)
|
84 |
+
|
85 |
+
exam_id = f"{university}_{year}" if day == '' else f"{university}_{year}_{day.replace('day', '')}"
|
86 |
+
filenames = sorted(os.listdir(path), key=lambda x: int(re.findall(r'\d+', x)[0]))
|
87 |
+
for filename in filenames:
|
88 |
+
if filename.endswith('.json'):
|
89 |
+
with open(os.path.join(path, filename), 'r') as f:
|
90 |
+
example = json.load(f)
|
91 |
+
|
92 |
+
if example['IU'] or example['alternatives_type'] != 'string' or example['has_associated_images']:
|
93 |
+
continue
|
94 |
+
|
95 |
+
choices = {
|
96 |
+
"text": [],
|
97 |
+
"label": ["A", "B", "C", "D", "E"]
|
98 |
+
}
|
99 |
+
for alternative in example['alternatives']:
|
100 |
+
choices['text'].append(alternative[3:].strip())
|
101 |
+
choices['label'] = choices['label'][:len(choices['text'])]
|
102 |
+
|
103 |
+
doc_id = f"{exam_id}_{example['number']}"
|
104 |
+
yield doc_id, {
|
105 |
+
"id": doc_id,
|
106 |
+
"question_number": example['number'],
|
107 |
+
"exam_id": exam_id,
|
108 |
+
"exam_year": year,
|
109 |
+
"university": university,
|
110 |
+
"question_type": example['subject'],
|
111 |
+
"nullified": None,
|
112 |
+
"question": example['question'],
|
113 |
+
"choices": choices,
|
114 |
+
"answerKey": example['answer']
|
115 |
+
}
|