godot_rl_BallChase / Player.gd
edbeeching's picture
edbeeching HF staff
Upload . with huggingface_hub
c6c8030
raw
history blame
5.05 kB
extends CharacterBody2D
# Declare member variables here. Examples:
# var a = 2
# var b = "text"
const pad = 100
const WIDTH = 1280
const HEIGHT = 720
const MAX_FRUIT = 10
var _bounds := Rect2(pad,pad,WIDTH-2*pad,HEIGHT-2*pad)
@export var speed := 500
@export var friction = 0.18
var _velocity := Vector2.ZERO
var _action = Vector2.ZERO
var _heuristic = "player"
@onready var fruit = $"../Fruit"
@onready var raycast_sensor = $"RaycastSensor2D"
@onready var walls := $"../Walls"
@onready var colision_shape := $"CollisionShape2D"
var fruit_just_entered = false
var just_hit_wall = false
var done = false
var best_fruit_distance = 10000.0
var fruit_count = 0
var n_steps = 0
var MAX_STEPS = 20000
var needs_reset = false
var reward = 0.0
func _ready():
raycast_sensor.activate()
reset()
func _physics_process(delta):
n_steps +=1
if n_steps >= MAX_STEPS:
done = true
needs_reset = true
if needs_reset:
needs_reset = false
reset()
return
var direction = get_direction()
if direction.length() > 1.0:
direction = direction.normalized()
# Using the follow steering behavior.
var target_velocity = direction * speed
_velocity += (target_velocity - _velocity) * friction
set_velocity(_velocity)
move_and_slide()
_velocity = velocity
update_reward()
if Input.is_action_just_pressed("r_key"):
reset()
func reset():
needs_reset = false
fruit_just_entered = false
just_hit_wall = false
#done = false
fruit_count = 0
_velocity = Vector2.ZERO
_action = Vector2.ZERO
position = _calculate_new_position()
spawn_fruit()
# position.x = randf_range(_bounds.position.x, _bounds.end.x)
# position.y = randf_range(_bounds.position.y, _bounds.end.y)
# fruit.position.x = randf_range(_bounds.position.x, _bounds.end.x)
# fruit.position.y = randf_range(_bounds.position.y, _bounds.end.y)
best_fruit_distance = position.distance_to(fruit.position)
n_steps = 0
func _calculate_new_position(position: Vector2=Vector2.ZERO) -> Vector2:
var new_position := Vector2.ZERO
new_position.x = randf_range(_bounds.position.x, _bounds.end.x)
new_position.y = randf_range(_bounds.position.y, _bounds.end.y)
if (position - new_position).length() < 4.0*colision_shape.shape.get_radius():
return _calculate_new_position(position)
var radius = colision_shape.shape.get_radius()
var rect = Rect2(new_position-Vector2(radius, radius),
Vector2(radius*2, radius*2)
)
for wall in walls.get_children():
#wall = wall as Area2D
var cr = wall.get_node("ColorRect")
var rect2 = Rect2(cr.get_position()+wall.position, cr.get_size())
if rect.intersects(rect2):
return _calculate_new_position()
return new_position
func get_direction():
if done:
_velocity = Vector2.ZERO
return Vector2.ZERO
if _heuristic == "model":
return _action
var direction := Vector2(
Input.get_action_strength("move_right") - Input.get_action_strength("move_left"),
Input.get_action_strength("move_down") - Input.get_action_strength("move_up")
)
return direction
func set_action(action):
_action.x = action["move"][0]
_action.y = action["move"][1]
func reset_if_done():
if done:
reset()
func get_obs():
var relative = fruit.position - position
var distance = relative.length() / 1500.0
relative = relative.normalized()
var result := []
result.append(((position.x / WIDTH)-0.5) * 2)
result.append(((position.y / HEIGHT)-0.5) * 2)
result.append(relative.x)
result.append(relative.y)
result.append(distance)
var raycast_obs = raycast_sensor.get_observation()
result.append_array(raycast_obs)
return {
"obs": result,
}
func update_reward():
reward -= 0.01 # step penalty
reward += shaping_reward()
func zero_reward():
reward = 0.0
func get_reward():
return reward
func shaping_reward():
var s_reward = 0.0
var fruit_distance = position.distance_to(fruit.position)
if fruit_distance < best_fruit_distance:
s_reward += best_fruit_distance - fruit_distance
best_fruit_distance = fruit_distance
s_reward /= 100.0
return s_reward
func set_heuristic(heuristic):
self._heuristic = heuristic
func get_obs_space():
# typs of obs space: box, discrete, repeated
return {
"obs": {
"size": [len(get_obs()["obs"])],
"space": "box"
}
}
func get_action_space():
return {
"move" : {
"size": 2,
"action_type": "continuous"
}
}
func get_done():
return done
func set_done_false():
done = false
func spawn_fruit():
fruit.position = _calculate_new_position(position)
best_fruit_distance = position.distance_to(fruit.position)
func fruit_collected():
fruit_just_entered = true
reward += 10.0
fruit_count += 1
spawn_fruit()
# if fruit_count > MAX_FRUIT:
# done = true
func wall_hit():
done = true
reward -= 10.0
just_hit_wall = true
reset()
func _on_Fruit_body_entered(body):
fruit_collected()
func _on_LeftWall_body_entered(body):
wall_hit()
func _on_RightWall_body_entered(body):
wall_hit()
func _on_TopWall_body_entered(body):
wall_hit()
func _on_BottomWall_body_entered(body):
wall_hit()