Datasets:

Languages:
English
ArXiv:
Rricha commited on
Commit
8d6beca
·
verified ·
1 Parent(s): 96419ff

Update climate-evaluation.py

Browse files
Files changed (1) hide show
  1. climate-evaluation.py +294 -3
climate-evaluation.py CHANGED
@@ -18,6 +18,10 @@ _CITATION = """
18
  }
19
  """
20
 
 
 
 
 
21
  _HOMEPAGE = "https://arxiv.org/abs/2401.09646"
22
 
23
  _LICENSE = ""
@@ -168,7 +172,7 @@ class ClimateEvaluation(datasets.GeneratorBasedBuilder):
168
  """\
169
  CDP-QA is a dataset compiled from the questionnaires of the Carbon Disclosure Project, where cities, corporations, and states disclose their environmental information. The dataset presents pairs of questions and answers, and the objective is to predict whether a given answer is valid for the corresponding question. We benchmarked ClimateGPT on the questionnaires from the Combined split. """
170
  ),
171
- data_dir="CDP/Combined",
172
  text_features={"question": "question", "answer": "answer"},
173
  label_classes=["0", "1"],
174
  label_column="label",
@@ -213,10 +217,10 @@ class ClimateEvaluation(datasets.GeneratorBasedBuilder):
213
  ),
214
  ),
215
  ClimateEvaluationConfig(
216
- name="exams",
217
  description=textwrap.dedent(
218
  """\
219
- EXAMS is a multiple choice question answering collected from high school examinations. To evaluate ClimateGPT on the cascaded machine translation approach, we evaluate on the Arabic subset of this dataset. The Arabic subset covers questions from biology, physics, science, social science and Islamic studies.
220
  """
221
  ),
222
  data_dir="exams/translated",
@@ -250,4 +254,291 @@ class ClimateEvaluation(datasets.GeneratorBasedBuilder):
250
  }"""
251
  ),
252
  ),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
253
  ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  }
19
  """
20
 
21
+ _DESCRIPTION = """\
22
+ Datasets for Climate Evaluation.
23
+ """
24
+
25
  _HOMEPAGE = "https://arxiv.org/abs/2401.09646"
26
 
27
  _LICENSE = ""
 
172
  """\
173
  CDP-QA is a dataset compiled from the questionnaires of the Carbon Disclosure Project, where cities, corporations, and states disclose their environmental information. The dataset presents pairs of questions and answers, and the objective is to predict whether a given answer is valid for the corresponding question. We benchmarked ClimateGPT on the questionnaires from the Combined split. """
174
  ),
175
+ data_dir="CDP",
176
  text_features={"question": "question", "answer": "answer"},
177
  label_classes=["0", "1"],
178
  label_column="label",
 
217
  ),
218
  ),
219
  ClimateEvaluationConfig(
220
+ name="translated_exams",
221
  description=textwrap.dedent(
222
  """\
223
+ EXAMS is a multiple choice question answering collected from high school examinations. To evaluate ClimateGPT on the cascaded machine translation approach, we evaluate on the English translation of the Arabic subset of this dataset. The Arabic subset covers questions from biology, physics, science, social science and Islamic studies.
224
  """
225
  ),
226
  data_dir="exams/translated",
 
254
  }"""
255
  ),
256
  ),
257
+ ClimateEvaluationConfig(
258
+ name="exams",
259
+ description=textwrap.dedent(
260
+ """\
261
+ EXAMS is a multiple choice question answering collected from high school examinations. To evaluate ClimateGPT on the cascaded machine translation approach, we evaluate on the Arabic subset of this dataset. The Arabic subset covers questions from biology, physics, science, social science and Islamic studies. Note, this dataset is in arabic.
262
+ """
263
+ ),
264
+ data_dir="exams/",
265
+ text_features={"subject": "subject", "question_stem": "question_stem", "choices": "choices"},
266
+ label_classes=["A", "B", "C", "D"],
267
+ label_column="answerKey",
268
+ url="https://arxiv.org/abs/2301.04253",
269
+ citation=textwrap.dedent(
270
+ """\
271
+ @inproceedings{hardalov-etal-2020-exams,
272
+ title = "{EXAMS}: A Multi-subject High School Examinations Dataset for Cross-lingual and Multilingual Question Answering",
273
+ author = "Hardalov, Momchil and
274
+ Mihaylov, Todor and
275
+ Zlatkova, Dimitrina and
276
+ Dinkov, Yoan and
277
+ Koychev, Ivan and
278
+ Nakov, Preslav",
279
+ editor = "Webber, Bonnie and
280
+ Cohn, Trevor and
281
+ He, Yulan and
282
+ Liu, Yang",
283
+ booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
284
+ month = nov,
285
+ year = "2020",
286
+ address = "Online",
287
+ publisher = "Association for Computational Linguistics",
288
+ url = "https://aclanthology.org/2020.emnlp-main.438",
289
+ doi = "10.18653/v1/2020.emnlp-main.438",
290
+ pages = "5427--5444",
291
+ }
292
+ }"""
293
+ ),
294
+ ),
295
  ]
296
+
297
+ def _info(self):
298
+ if self.config.name == "exams" or self.config.name == "translated_exams":
299
+ features = datasets.Features(
300
+ {
301
+ "subject": datasets.Value("string"),
302
+ "question_stem": datasets.Value("string"),
303
+ "answerKey": datasets.ClassLabel(
304
+ names=["A", "B", "C", "D"]
305
+ ),
306
+ "choices":
307
+ {
308
+ "text": datasets.features.Sequence(datasets.Value("string")),
309
+ "label": datasets.ClassLabel(
310
+ names=["A", "B", "C", "D"]
311
+ ),
312
+ },
313
+ }
314
+ )
315
+ else:
316
+ if self.config.name == "cdp_qa":
317
+ features = {
318
+ text_feature: datasets.Value("string")
319
+ for text_feature in self.config.text_features.keys()
320
+ }
321
+ features["category"] = datasets.Value("string")
322
+ else:
323
+ features = {
324
+ text_feature: datasets.Value("string")
325
+ for text_feature in self.config.text_features.keys()
326
+ }
327
+ if self.config.label_classes:
328
+ features["label"] = datasets.features.ClassLabel(
329
+ names=self.config.label_classes
330
+ )
331
+ else:
332
+ features["label"] = datasets.Value("float32")
333
+ features["idx"] = datasets.Value("int32")
334
+ return datasets.DatasetInfo(
335
+ description=_DESCRIPTION,
336
+ features=datasets.Features(features),
337
+ homepage=self.config.url,
338
+ citation=self.config.citation + "\n" + _CITATION,
339
+ )
340
+
341
+ def _split_generators(self, dl_manager):
342
+ data_dir = self.config.data_dir
343
+
344
+ if self.config.name == "exams" or self.config.name == "translated_exams":
345
+ return [
346
+ datasets.SplitGenerator(
347
+ name=datasets.Split.TEST,
348
+ gen_kwargs={
349
+ "data_file": os.path.join(data_dir or "", "test.csv"),
350
+ "split": "test",
351
+ },
352
+ ),
353
+ ]
354
+
355
+ if self.config.name == "exeter":
356
+ return [
357
+ datasets.SplitGenerator(
358
+ name=datasets.Split.TRAIN,
359
+ gen_kwargs={
360
+ "data_file": os.path.join(data_dir or "", "training.csv"),
361
+ "split": "train",
362
+ },
363
+ ),
364
+ datasets.SplitGenerator(
365
+ name=datasets.Split.VALIDATION,
366
+ gen_kwargs={
367
+ "data_file": os.path.join(data_dir or "", "validation.csv"),
368
+ "split": "valid",
369
+ },
370
+ ),
371
+ datasets.SplitGenerator(
372
+ name=datasets.Split.TEST,
373
+ gen_kwargs={
374
+ "data_file": os.path.join(data_dir or "", "test.csv"),
375
+ "split": "test",
376
+ },
377
+ ),
378
+ ]
379
+
380
+ if self.config.name == "climate_fever":
381
+ return [
382
+ datasets.SplitGenerator(
383
+ name=datasets.Split.TEST,
384
+ gen_kwargs={
385
+ "data_file": os.path.join(
386
+ data_dir or "", "climate-fever-dataset-r1.jsonl"
387
+ ),
388
+ "split": "test",
389
+ },
390
+ ),
391
+ ]
392
+
393
+ if self.config.name == "climatext":
394
+ files = {
395
+ "train": [
396
+ "train-data/AL-10Ks.tsv : 3000 (58 positives, 2942 negatives) (TSV, 127138 KB).tsv",
397
+ "train-data/AL-Wiki (train).tsv",
398
+ ],
399
+ "valid": ["dev-data/Wikipedia (dev).tsv"],
400
+ "test": [
401
+ "test-data/Claims (test).tsv",
402
+ "test-data/Wikipedia (test).tsv",
403
+ "test-data/10-Ks (2018, test).tsv",
404
+ ],
405
+ }
406
+ return [
407
+ datasets.SplitGenerator(
408
+ name=datasets.Split.TRAIN,
409
+ gen_kwargs={
410
+ "data_file": [
411
+ os.path.join(data_dir or "", f) for f in files["train"]
412
+ ],
413
+ "split": "train",
414
+ },
415
+ ),
416
+ datasets.SplitGenerator(
417
+ name=datasets.Split.VALIDATION,
418
+ gen_kwargs={
419
+ "data_file": [
420
+ os.path.join(data_dir or "", f) for f in files["valid"]
421
+ ],
422
+ "split": "valid",
423
+ },
424
+ ),
425
+ datasets.SplitGenerator(
426
+ name=datasets.Split.TEST,
427
+ gen_kwargs={
428
+ "data_file": [
429
+ os.path.join(data_dir or "", f) for f in files["test"]
430
+ ],
431
+ "split": "test",
432
+ },
433
+ ),
434
+ ]
435
+
436
+ if self.config.name == "cdp_qa":
437
+ categories = {
438
+ "cities": "Cities/Cities Responses",
439
+ "states": "States",
440
+ "corporations": "Corporations/Corporations Responses/Climate Change",
441
+ "combined": "Combined",
442
+ }
443
+ return [
444
+ datasets.SplitGenerator(
445
+ name=datasets.Split.TRAIN,
446
+ gen_kwargs={
447
+ "data_file": [
448
+ (k, os.path.join(data_dir or "", v, "train_qa.csv"))
449
+ for k, v in categories.items()
450
+ ],
451
+ "split": "train",
452
+ },
453
+ ),
454
+ datasets.SplitGenerator(
455
+ name=datasets.Split.VALIDATION,
456
+ gen_kwargs={
457
+ "data_file": [
458
+ (k, os.path.join(data_dir or "", v, "val_qa.csv"))
459
+ for k, v in categories.items()
460
+ ],
461
+ "split": "valid",
462
+ },
463
+ ),
464
+ datasets.SplitGenerator(
465
+ name=datasets.Split.TEST,
466
+ gen_kwargs={
467
+ "data_file": [
468
+ (k, os.path.join(data_dir or "", v, "test_qa.csv"))
469
+ for k, v in categories.items()
470
+ ],
471
+ "split": "test",
472
+ },
473
+ ),
474
+ ]
475
+
476
+ return [
477
+ datasets.SplitGenerator(
478
+ name=datasets.Split.TRAIN,
479
+ gen_kwargs={
480
+ "data_file": os.path.join(data_dir or "", "train.csv"),
481
+ "split": "train",
482
+ },
483
+ ),
484
+ datasets.SplitGenerator(
485
+ name=datasets.Split.VALIDATION,
486
+ gen_kwargs={
487
+ "data_file": os.path.join(data_dir or "", "val.csv"),
488
+ "split": "valid",
489
+ },
490
+ ),
491
+ datasets.SplitGenerator(
492
+ name=datasets.Split.TEST,
493
+ gen_kwargs={
494
+ "data_file": os.path.join(data_dir or "", "test.csv"),
495
+ "split": "test",
496
+ },
497
+ ),
498
+ ]
499
+
500
+ def _generate_examples(self, data_file, split):
501
+ if self.config.name == "climatext":
502
+ idx = iter(range(100000))
503
+ for file in data_file:
504
+ yield from self._process_file(file, delimiter="\t", idx=idx)
505
+ elif self.config.name == "cdp_qa":
506
+ idx = iter(range(10000000))
507
+ for category, file in data_file:
508
+ yield from self._process_file(file, idx=idx, category=category)
509
+ else:
510
+ yield from self._process_file(data_file)
511
+
512
+ def _process_file(self, data_file, delimiter=",", idx=None, category=None):
513
+ with open(data_file, encoding="utf8") as f:
514
+ process_label = self.config.process_label
515
+ label_classes = self.config.label_classes
516
+ reader = csv.DictReader(f, delimiter=delimiter, quoting=csv.QUOTE_ALL)
517
+ for n, row in enumerate(reader):
518
+ example = {
519
+ feat: row[col] for feat, col in self.config.text_features.items()
520
+ }
521
+ if idx:
522
+ example["idx"] = next(idx)
523
+ else:
524
+ example["idx"] = n
525
+
526
+ if category:
527
+ example["category"] = category
528
+
529
+ if self.config.label_column in row:
530
+ label = row[self.config.label_column]
531
+ # For some tasks, the label is represented as 0 and 1 in the tsv
532
+ # files and needs to be cast to integer to work with the feature.
533
+ if label_classes and label not in label_classes:
534
+ label = int(label) if label else None
535
+ example["label"] = process_label(label)
536
+ else:
537
+ example["label"] = process_label(-1)
538
+
539
+ # Filter out corrupted rows.
540
+ for value in example.values():
541
+ if value is None:
542
+ break
543
+ else:
544
+ yield example["idx"], example